Answer:
c. Momentum is the product of mass and velocity
e. Momentum is a vector quantity
g. Momentum has unit of kgm/s
Explanation:
Linear momentum P
P = m .v
m =mass
v=Velocity
If mass take in kg and velocity is in m/s then momentum p will be in kg.m/s.
1. momentum is the product of velocity and mass.
2.Momentum is a vector quantity.
3.Momentum have kg.m/s unit.
So the following option are correct.
c. Momentum is the product of mass and velocity
e. Momentum is a vector quantity
g. Momentum has unit of kgm/s.
Note-
1.Joule is the unit of energy.
2.One-half the product of mass and the square of the object's speed is known as kinetic energy.
Answer:
h = 13.06 m
Explanation:
Given:
- Specific gravity of gasoline S.G = 0.739
- Density of water p_w = 997 kg/m^3
- The atmosphere pressure P_o = 101.325 KPa
- The change in height of the liquid is h m
Find:
How high would the level be in a gasoline barometer at normal atmospheric pressure?
Solution:
- When we consider a barometer setup. We dip the open mouth of an inverted test tube into a pool of fluid. Due to the pressure acting on the free surface of the pool, the fluid starts to rise into the test-tube to a height h.
- The relation with the pressure acting on the free surface and the height to which the fluid travels depends on the density of the fluid and gravitational acceleration as follows:
P = S.G*p_w*g*h
Where, h = P / S.G*p_w*g
- Input the values given:
h = 101.325 KPa / 0.739*9.81*997
h = 13.06 m
- Hence, the gasoline will rise up to the height of 13.06 m under normal atmospheric conditions at sea level.