Just choice D.
If you find the number of atoms of each element, you will find that only choice D has the same amounts on each side of the equation.
Answer:
14.53ML
Explanation:
V1=218
V2=?
P2=15p1
USING BOYLE'S LAW
P1V1=P2V2
V2=P1V1/P2=P1(218ML)/15P1
=14.53ML
Answer:
In the final solution, the concentration of sucrose is 0.126 M
Explanation:
Hi there!
The number of moles of solute in the volume taken from the more concentrated solution will be equal to the number of moles of solute in the diluted solution. Then, the concentration of the first solution can be calculated using the following equation:
Ci · Vi = Cf · Vf
Where:
Ci = concentration of the original solution
Vi = volume of the solution taken to prepare the more diluted solution.
Cf = concentration of the more diluted solution.
Vf = volume of the more diluted solution.
For the first dillution:
26.6 ml · 2.50 M = 50.0 ml · Cf
Cf = 26.6 ml · 2.50 M / 50.0 ml
Cf = 1.33 M
For the second dilution:
16.0 ml · 1.33 M = 45.0 ml · Cf
Cf = 16.0 ml · 1.33 M / 45.0 ml
Cf = 0.473 M
For the third dilution:
20.0 ml · 0.473 M = 75.0 ml · Cf
Cf = 20.0 ml · 0.473 M / 75.0 ml
Cf = 0.126 M
In the final solution, the concentration of sucrose is 0.126 M
1) concentration or partial pressure of species
involved. 2) temperature • 3) presence of catalyst
4) nature of reactants.
Group 1 elements (usually called alkali metals) are not very electronegative and have small ionization energies due to that. The reason why they are not very electronegative is that they really want to loose their one valence electron so that they can have a noble gas electron configuration (completed octet).
I hope this helps.