This solute-solvent interaction will release energy into the surroundings and makes the beaker warm.
<u>Explanation:</u>
The sulfuric acid is dissolved in water and it formed a solvation sphere of water molecules around the sulphur ions. So on stirring the beaker is getting warm. As the beaker is getting warm, this means the reaction occuring between sulfuric acid and water is exothermic reaction.
And so the energy is released into the surroundings. The energy released came from the breaking of bonds of sulfuric acid, as the acid is getting dissociated in water.
So, the release of energy in the surroundings lead to the warming of the beaker. Hence, the solute-solvent interaction release energy into the surroundings.
C.Work was required by an outside force.
Answer:
Explanation:
Take a random sample of nuts from the jar. Let's take two handfuls, after shaking the jar and mixing the nuts thoroughly. Separate the nuts into almonds and cashews. Count each pile, then do the following calculation (these numbers are random, for example only).
<u> Count</u> <u>Percentage %</u>
Almonds 38 (38)/(87)x100
Cashews <u> 49</u> 49/87x100
87 87/87 = 100%
Ratio of Almonds to Cashews: <u>38/49</u>
Answer:
50.76 mol H2O.
Explanation:
The photosynthesis follows the equation:
6CO2 + 6H2O ---> C6H12O6 + 6O2
This means that 6 mol of H2O are needed to obtain 1 mol of C6H12O6 (see the numbers that precedes every molecule to know how many mols are in game).
So we can say that:
1 mol C6H12O6 --------- 6 mol H2O
8.46 mol C6H12O6 -----x= 8.46 x 6 : 1 = 50.76 mol H20