Answer:
Cl
Explanation:
The element Cl will have the strongest ionization energy from the given choices. Most non-metals have higher ionization energy compared to metals.
Ionization energy is the energy required to remove the most loosely held electron from the gaseous phase of an atom.
- As you go from left to right on the periodic table, it increases progressive
- From top to bottom, the ionization energy reduces significantly.
- The attractive force between the protons in the nucleus and the electrons plays a very important role.
- In metals, they have very large atomic radius, the attractive force on the outer electrons is very weak.
- This is not the case in non-metals
Answer:
More energy is required to raise its temperature. Therefore, temperature does not stay the same when heat energy increases.
Answer:
The answers to the question are
1. 2nd and above order order
2. 2nd order
3. 1/2 order
4. 1st order
5. 0 order
Explanation:
We have 
1. For nth order reaction half life
∝ ![\frac{1}{[A_{0} ]^{n-1} }](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5BA_%7B0%7D%20%5D%5E%7Bn-1%7D%20%7D)
Therefore for a 0 order reaction increasing concentration of the reactant there will increase 
First order reaction is independent [A₀].
Second order reaction [A₀] decrease, increase.
Similarly for a third order reaction
1. 2nd order
2. 2nd order reaction
3. Order of reaction is 1/2.
4. 1st order reaction.
5. Zero order reaction.
Answer:
0.085 moles of N₂O₅ are needed
Explanation:
Given data:
Mass of NO₂ produces = 7.90 g
Moles of N₂O₅ needed = ?
Solution:
2N₂O₅ → 4NO₂ + O₂
Number of moles of NO₂ produced :
Number of moles = mass/ molar mass
Number of moles = 7.90 g/ 46 g/mol
Number of moles = 0.17 mol
now we will compare the moles of NO₂ with N₂O₅.
NO₂ : N₂O₅
4 : 2
0.17 : 2/4×0.17 = 0.085 mol
Thus, 0.085 moles of N₂O₅ are needed.