Answer:
= 4.86 s
= 1.98 s
Explanation:
<u><em>Given:</em></u>
Length = l = 1 m
Acceleration due to gravity of moon =
= 1.67 m/s²
Acceleration due to gravity of Earth =
= 10 m/s²
<u><em>Required:</em></u>
Time period = T = ?
<u><em>Formula:</em></u>
T = 2π 
<u><em>Solution:</em></u>
<u>For moon</u>
<em>Putting the givens,</em>
T = 2(3.14) 
T = 6.3 
T = 6.3 × 0.77
T = 4.86 sec
<u>For Earth,</u>
<em>Putting the givens</em>
T = 2π 
T = 2(3.14) 
T = 6.3 × 0.32
T = 1.98 sec
Answer: Ecosystem
Explained: There's a minimum word count I'm filling up, don't mind me.
electric field lines are graphical presentation of electric field intensity
It is the graphical way to represent the electric field variation
If we draw the tangent to electric field line then it will give the direction of net electric field at that point
So whenever we draw the electric field lines of a charge distribution then it will always follow this basic properties
here we will always follow these basic properties of field lines
now as we can see that here two positive charges are placed nearby so the electric field must be like it can not intersect at any point because at intersection of two lines the direction of electric field not defined
As we have two directions of tangents at that point
So here the incorrect presentation is the intersection of two field lines which is not possible
It's just asking you to sit down and COUNT the little squares in each sector.
It'll help you keep everything straight if you take a very sharp pencil and make a tiny dot in each square as you count it. That way, you'll be able to see which ones you haven't counted yet, and also you won't count a square twice when you see that it already has a dot in it.
(If, by some chance, this is a picture of the orbit of a planet revolving around the sun ... as I think it might be ... then you should find that both sectors jhave the same number of squares.)