Answer:
This will require 266.9 of heat energy.
Explanation:
To calculate the energy required to raise the temperature of any given substance, here's what you require:The mass of the material, m The temperature change that occurs, ΔT The specific heat capacity of the material,
c
(which you can look up). This is the amount of heat required to raise 1 gram of that substance by 1°C.
Here is a source of values of
c for different substances:
Once you have all that, this is the equation:
Q=m×c×ΔT(Q is usually used to symbolize that heat required in a case like this.)For water, the value of c is 4.186g°C So, Q=750×4.186×85=266=858=266.858
Answer:
100N
Explanation:
Newton's third law states that whenever an object exerts a force on a second object, it exerts a force of equal magnitude and direction but in the opposite direction on the first. It is often stated as follows: Each action always opposes an equal but opposite reaction.
The subject 1 of 100kg is making a force F, to move an object from 50Kg to 2m / s ^ 2. This Force the object of 50Kg will reflect it in the opposite direction by Newton's third law.
Once the parameter of the force that both are experiencing is clarified, Newton's second law is applied to their respective calculation.

That is the force the boy exert on the man during the shove.
Answer:
The mass and velocity for kinetic energy. Potential Energy: How high an object is and the mass in kilograms or it is the weight in and how high an object is. There are two formulas to calculate potential energy, but the one with grams is used more often.
Explanation:
Hope this helps!
Answer:
1Mm
Explanation:
i think this one. so it is wrong then also dont be angry with me because iam trying to help u
Answer:
(A) a net torque but no net force on the loop.
Explanation:
The total force on the loop is zero because the forces on the opposite sides of the loop are equal but act in opposite directions and as a result they cancel each other out. The two forces on opposite sides to the axis of rotation each give rise to a torque about the axis of rotation. This torque is directed along the axis of rotation.