Answer:
hub moon merc saturn sun galaxy deep field
Explanation:
Answer:
352,088.37888Joules
Explanation:
Complete question;
A hiker of mass 53 kg is going to climb a mountain with elevation 2,574 ft.
A) If the hiker starts climbing at an elevation of 350 ft., what will their change in gravitational potential energy be, in joules, once they reach the top? (Assume the zero of gravitational potential is at sea level)
Chane in potential energy is expressed as;
ΔGPH = mgΔH
m is the mass of the hiker
g is the acceleration due to gravity;
ΔH is the change in height
Given
m = 53kg
g = 9.8m/s²
ΔH = 2574-350 = 2224ft
since 1ft = 0.3048m
2224ft = (2224*0.3048)m = 677.8752m
Required
Gravitational potential energy
Substitute the values into the formula;
ΔGPH = mgΔH
ΔGPH = 53(9.8)(677.8752)
ΔGPH = 352,088.37888Joules
Hence the gravitational potential energy is 352,088.37888Joules
Impulse = change in momentum
The answer is 0.
Silver and Silver (II) are different because silver (II) has more than 1 electric charge. It has 2! lol
Answer:
The kinetic energy of the bullet is 5.4 × 10³ J
Explanation:
Hi there!
The equation of kinetic energy is the following:
KE = 1/2 · m · v²
Where:
KE = kinetic energy.
m = mass of the bullet.
v = speed of the bullet.
Let´s convert the mass unit to kg so that our result is in Joules:
64 g · ( 1 kg / 1000 g) = 0.064 kg
Then, the kinetic energy will be the following:
KE = 1/2 · 0.064 kg · (411 m/s)²
KE = 5.4 × 10³ J