1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marizza181 [45]
3 years ago
11

Why do atoms do group 1 element lose electrons to form cations

Physics
1 answer:
Mrac [35]3 years ago
8 0

Answer:

when a element of 1 group take part in reaction, its atom looses outer electron and form positively charged ions called Cation.

Explanation:

You might be interested in
A thin ring of radius 73 cm carries a positive charge of 610 nC uniformly distributed over it. A point charge q is placed at the
kow [346]

Answer:

q = - 93.334 nC

Explanation:

GIVEN DATA:

Radius of ring  73 cm

charge on ring 610 nC

ELECTRIC FIELD p FROM CENTRE IS AT 70 CM

E  =  2000 N/C

Electric field due tor ring is guiven as

E = \frac{KQx}{[x^2+ R^2]^{3/2}}

E = \frac{9\time 10^9 \times 610\times 10^[-9} 0.70}{(0.70^2 + 0.73^2)^{3/2}}

E1 = 3714.672 N/C

electric field due to point charge q

E  =\frac[kq}{x^2}

E = \frac{9\times 10^9 \times q}{0.70^2}

E2 = 1.837\times 10^{10}\times q

now the eelctric charge at point P is

E = E1 + E22000 =  3714.672 + 1.837\times 10[10} \times q

solving for q

q = - 93.334 nC

7 0
3 years ago
a scale model of the solar system where 50 cm represents 1.0x10 to the fifth km is actual distance what would be the dimension o
Fofino [41]

The distance between Mars and the Sun in the scale model would be 1140 m

Explanation:

In this scale model, we have:

x_1 = 50 cm represents an actual distance of

d_1 = 1.0\cdot 10^5 km

The actual distance between Mars and the Sun is 228 million km, therefore

d_2=228\cdot 10^6 km

On the scale model, this would corresponds to a distance of x_2.

Therefore, we can write the following proportion:

\frac{x_1}{d_1}=\frac{x_2}{d_2}

And solving for x_2, we find:

x_2=\frac{x_1 d_2}{d_1}=\frac{(50)(228\cdot 10^6)}{1\cdot 10^5}=1.14\cdot 10^5 cm = 1140 m

Learn more about distance:

brainly.com/question/3969582

#LearnwithBrainly

4 0
3 years ago
Why doesn’t she love me
o-na [289]
I bet she does just give her tule work on yourself
7 0
3 years ago
Read 2 more answers
A car manufacturer wants to change its car’s design to increase the car’s acceleration. Which changes should the engineers consi
likoan [24]

Answer:

The car manufacturers could increase bore of the cylinders, place the engine in the center or back of the car, add 1 to 2 turbochargers, and lower the center of gravity of the vehicle to increase traction.

Explanation:

Turbochargers would be recommended because they significantly increase both the torque of the engine as well as the amount of horses powering the car while also increasing original efficiency both with and without the additional power. Weight adjustment allows for lightweight vehicles with good traction. This is important to both keep control of the car under acceleration, but it also makes the vehicle more efficient due to the now sheddable unnecessary weight. A more obvious approach would be to increase the base horsepower and torque of the engine by increasing the bore of the cylinders and the weight of the pistons. This acts as an inertial lever, because the extra piston weight will drag the crankshaft faster. This could also be achieved by taking away piston weight, but this could be catastrophic should a piston slip.

4 0
3 years ago
Consider the two moving boxcars in Example 5. Car 1 has a mass of m1 = 65000 kg and a velocity of v01 = +0.80 m/s. Car 2 has a m
Amiraneli [1.4K]

Answer:

1.034m/s

Explanation:

We define the two moments to develop the problem. The first before the collision will be determined by the center of velocity mass, while the second by the momentum preservation. Our values are given by,

m_1 = 65000kg\\v_1 = 0.8m/s\\m_2 = 92000kg\\v_2 = 1.2m/s

<em>Part A)</em> We apply the center of mass for velocity in this case, the equation is given by,

V_{cm} = \frac{m_1v_1+m_2v_2}{m_1+m_2}

Substituting,

V_{cm} = \frac{(65000*0.8)+(92000*1.2)}{92000+65000}

V_{cm} = 1.034m/s

Part B)

For the Part B we need to apply conserving momentum equation, this formula is given by,

m_1v_1+m_2v_2 = (m_1+m_2)v_f

Where here v_f is the velocity after the collision.

v_f = \frac{m_1v_1+m_2v_2}{m_1+m_2}

v_f = \frac{(65000*0.8)+(92000*1.2)}{92000+65000}

v_f = 1.034m/s

8 0
3 years ago
Other questions:
  • Only one of the following is possible for a moving object. Which one? The velocity is directed eastward and is decreasing, while
    12·1 answer
  • Ten students stand in a circle and are told to make a transverse wave. what best describes the motion of the students?
    6·2 answers
  • Find the average power Pavg created by the force F in terms of the average speed vavg of the sled.
    10·1 answer
  • What trends were seen in Mendeleev’s periodic table?
    5·2 answers
  • 8. According to the passage, in order for LeBron James to score a slam-dunk, what must he<br> exert?
    5·2 answers
  • A bus starting from rest moves with a uniform acceleration of 0.1 m s -2 for 2 minutes. Find (a) the speed acquired, (b) the dis
    12·1 answer
  • If you run at an average speed of 10 mi/h, how long will it take
    14·1 answer
  • Hiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiineeeedhelp
    11·1 answer
  • EMERGENCY! PLS HELP
    6·1 answer
  • A flight into space by a spacecraft where the spacecraft returns to Earth without achieving orbit is called a
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!