The amount of energy before and after any energy transformations remain the same because energy cannot be created or destroyed. From the law conservation of energy; any time energy is transferred between two objects, or converted from one form into another, no energy is created and none is destroyed. The total amount of energy involved in the process remains the same.
Well depending on what current the heater pulls im going to assume about 13, and 13A for the hair dryer, thats 26A on the 40A circuit.
I dont see how a lightbulb could overload the circuit.
Anyway, assuming the circuit is overloaded by some really big heater- the circuit would trip, the fuse would go and remain off. Most houses are fitted with seperate circuits for lights and sockets, so the light may remain on depending on the breaker board. - the reason for them all being able to run with the sudden overload may be due to a surge.
One solution to this is not to put such a large heater on the circuit with other appliances.
Another may be to dry your hair in the dark
Answer:
50.2 m
Explanation:
We can solve the problem by using the following SUVAT equation for the vertical position of the rock:

where
h is the initial height (the depth of the canyon), taking the bottom of the canyon as reference position
u = 0 is the initial velocity of the rock
t is the time
is the acceleration of gravity
When the rock reaches the bottom, t = 3.2 s and y = 0. Substituting these numbers and solving for h, we find the depth of the canyon:

Answer:

Explanation:
The rectangular components of a vector
having a magnitude v and angle θ are:


The golf ball has an initial speed of 75 m/s at an angle of 60 degrees.
The variables of the equations have the values:
v = 75 m/s
θ = 60°
Substituting into the formula:



Without specifying units and with precision to the hundredths place:

<h3>
Answer: 130 meters</h3>
===================================================
Explanation:
vi = 5 and vf = 8 are the initial and final velocities respectively. The change in time is t = 20 seconds.
So,
x = 0.5*(vi + vf)*t
x = 0.5*(5+8)*20
x = 130 meters
represents the distance traveled. The first equation shown above is one of the four kinematics equations.