The Hydronium ion concentration increases to 100 times the original concentration (10^2)
The correct answer to the question is : B) The weight of the water, and C) The height of the water.
EXPLANATION :
Before coming into any conclusion, first we have to understand potential energy of a body.
The potential energy of a body due to its position from ground is known as gravitational potential energy.
The gravitational potential energy is calculated as -
Potential energy P.E = mgh
Here, m is the mass of the body, and g is the acceleration due to gravity.
h stands for the height of the body from the ground.
We know that weight of a body is equal to the product of mass with acceleration due to gravity.
Hence, weight W = mg
Hence, potential energy is written as P.E = weight × height.
Hence, potential energy depends on the weight and height of the water.
Answer:
a.2.5x 10^3 m/s
b.mr=48kg/s
Explanation:
A rocket is moving away from the solar system at a speed of 7.5 ✕ 103 m/s. It fires its engine, which ejects exhaust with a speed of 5.0 ✕ 103 m/s relative to the rocket. The mass of the rocket at this time is 6.0 ✕ 104 kg, and its acceleration is 4.0 m/s2. What is the velocity of the exhaust relative to the solar system? (B) At what rate was the exhaust ejected during the firing?
velocity of the exhaust relative to the solar system
velocity of the rocket -velocity of the exhaust relative to the rocket.
7.5 ✕ 103 m/s-5.0 ✕ 103 m/s
2.5x 10^3 m/s
. b we will look for the thrust of the rocket
T=ma
T=6.0 ✕ 104 kg*4.0 m/s2
T=2.4*10^5N
f=mass rate *velocity of the exhaust
T=2.4*10^5N=mr*5.0 ✕ 10^3 m/s
mr=2.4*10^5N/5.0 ✕ 10^3
mr=48kg/s
Machines are never 100% efficient because they are made by humans and we make errors and nothing we make is perfect, that's why the machines we build are not 100% accurate or efficient.