Answer:
a

b
Explanation:
From the question we are told that
The radius of the flywheel is 
The mass of the flywheel is 
The rotational speed of the flywheel is 
The power supplied by the motor is 
Generally the moment of inertia of the flywheel is mathematically represented as

substituting values


The kinetic energy that is been stored is

substituting values

Generally power is mathematically represented as

=> 
substituting the value

The correct answer is A.
The coefficient of absorption of material A is 30%. So, the material will absorb 30% energy of the incident wave falling on it. Thus, the reflected wave will carry the rest 70% energy.
The coefficient of absorption of material B is 47%. So, the material will absorb 47% energy of the incident wave falling on it. Thus, the reflected wave will carry the rest 53% energy.
The coefficient of absorption of material C is 62%. So, the material will absorb 62% energy of the incident wave falling on it. Thus, the reflected wave will carry the rest 28% energy.
Hence, material C would be the best, because the percentage of the energy in an incident wave that remains in a reflected wave from this material is the smallest.
Answer:
349 m
Explanation:
Parameters given:
Mass of climber, m = 92.6 kg
Amount of food calories = 735
1 food calorie = 103 calories
735 food calories = 75705 calories
1 joule is equal to 0.239 calories. Therefore, 75705 calories will be 316749.72 joules.
Hence, this is the amount of work the climber must do work off the food he ate.
Work done is given as:
W = Force * distance
W = m * g * h
h = W/(m * g)
h = 316749.72/(92.6 * 9.8)
h = 349 m
Answer:
Copper's composition does not change as its shape changes, hence it is a physical feature.
Explanation:
The best answer is C) total mass of the team.
In tug of war, the mass of each team is a critical factor in determining which side wins. The team with greater mass will require greater force to move, and also is likely able to exert greater force on the other team due to the correlation between strength and mass.