The electric flux through the hole is
.
- Electric flux is the number of electric field lines cutting through the surface and is measured as surface intregal of electric field over that surface
- Mathematically it is given by
where E is the electric field and A is the area. - Gauss's law states that electric flux through closed surface is equal to the 1 / ε₀ times the charge enclosed by that surface which is given by Ф = q / ε₀ where q is the central charge and ε₀ is the permittivity of the medium.
It is given , hollow sphere of radius 10.0cm surrounds a 10.0-μC charge.
The whole surface of hollow sphere 

Area of the hole ( both side ) 

According to Gauss's theorem, the flow from a particular charge in the center is given by

This flux flows through the surface of the sphere, so the flux per unit area which is given by

Flux through area of hole is given by :

Learn about more electric flux here :
brainly.com/question/26289097
#SPJ4
Answer:
<em>The centripetal acceleration would increase by a factor of 4</em>
<em>Correct choice: B.</em>
Explanation:
<u>Circular Motion</u>
The circular motion is described when an object rotates about a fixed point called center. The distance from the object to the center is the radius. There are other magnitudes in the circular motion like the angular speed, tangent speed, and centripetal acceleration. The formulas are:


If the speed is doubled and the radius is the same, then


The centripetal acceleration would increase by a factor of 4
Correct choice: B.
Answer:
Force = 3.333 Newton
Explanation:
Given the following data;
Change in momentum = 10 Kgm/s
Time = 3 seconds
To find the force acting on it;
In Physics, the change in momentum of a physical object is equal to the impulse experienced by the physical object.
Mathematically, it is given by the formula;
Force * time = mass * change in velocity
Impulse = force * time
Substituting into the formula, we have;
10 = force * 3
Force = 10/3
Force = 3.333 Newton
No spacecraft has been built yet that was able to absorb harmful
radiations in space, change weather conditions on Earth, or destroy
meteors and comets which might strike Earth.
We should continue to send robotic spacecrafts into space
because they help discard some myths about objects in space.
In other words, they help us learn things that we never knew before.