Answer:
4363.3231 feets²
Explanation:
Given that :
Distance, r = 50 ft
θ = 200°
The arc length of area covered :
Arc length = θ/360° * πr²
Arc length = (200/360) * 50 ft ^2 * π
Arc length = 0.5555555 * 2500 * π
Arc length = 4363.3231 feets²
Answer:
Angle θ = 30.82°
Explanation:
From Malus’s law, since the intensity of a wave is proportional to its amplitude squared, the intensity I of the transmitted wave is related to the incident wave by; I = I_o cos²θ
where;
I_o is the intensity of the polarized wave before passing through the filter.
In this question,
I is 0.708 W/m²
While I_o is 0.960 W/m²
Thus, plugging in these values into the equation, we have;
0.708 W/m² = 0.960 W/m² •cos²θ
Thus, cos²θ = 0.708 W/m²/0.960 W/m²
cos²θ = 0.7375
Cos θ = √0.7375
Cos θ = 0.8588
θ = Cos^(-1)0.8588
θ = 30.82°
Answer:
F₁ / F₂ = 10
therefore the first out is 10 times greater than the second barrier
Explanation:
For this exercise let's use the relationship between momentum and momentum.
I = F t = Δp
in this case the final velocity is zero
F t = 0 -m v₀
F = m v₀ / t
in order to answer the question we must assume that the two vehicles have the same mass and speed
concrete barrier
F₁ = -p₀ / 0.1
F₁ = - 10 p₀
barrier collapses
F₂ = -p₀ / 1
let's look for the relationship of the forces
F₁ / F₂ = 10
therefore the first out is 10 times greater than the second barrier
Answer:
Bounce 1 , pass 3, emb2
Explanation:
(By the way I am also doing that question on College board physics page) For the Bounce arrow, since it bumps into the object and goes back, it means now it has a negative momentum, which means a larger momentum is given to the object. P=mv, so the velocity is larger for the object, and larger velocity means a larger kinetic energy which would result in a larger change in the potential energy. Since K=0.5mv^2=U=mgh, a larger potential energy would have a larger change in height which means it has a larger angle θ with the vertical line. Comparing with the "pass arrow" and the "Embedded arrow", the embedded arrow gives the object a larger momentum, Pi=Pf (mv=(M+m)V), it gives all its original momentum to the two objects right now. (Arrow and the pumpkin), it would have a larger velocity. However for the pass arrow, it only gives partial of its original momentum and keeps some of them for the arrow to move, which means the pumpkin has less momentum, means less velocity, and less kinetic energy transferred into the potential energy, and means less change in height, less θangle. So it is Bounce1, pass3, emb2.
I’m going to use molasses as an example of a substance.
The mass and volume both change when changing the amount of molasses.
However, the density does not change. This is because the mass and volume increase at the same rate/proportion!
Even though there is more molasses (mass) in test tube A, the molasses also takes up more space (volume). Therefore, the spacing between those tiny particles that make up the molasses is constant (does not change).
The size or amount of a material/substance does not affect its density.