Answer:
Explanation:
Calories to be burnt = 3500 - 2500 = 1000 Cals .
Efficiency of conversion to mechanical work is 25 % .
Work needed to burn this much of Cals = 1000 x 100 / 25 = 4000 Cals.
4000 Cals = 4.2 x 4000 = 16800 J .
Work done in one jump = kinetic energy while jumping
= 1/2 m v²
= .5 x 70 x 3.3²
= 381.15 J .
Number of jumps required = 16800 / 381.15
= 44 .
Coastal erosion has depleted a large portion of South Louisiana's wetlands along the coastline in swamps and marshes mainly due to storm surges. But other factors also contributed to this erosion. Canals and waterways dug through the marshes and swamps for the oil industry is one factor. Man-made levees erected to provide protection to residents living adjacent to the river is another major cause. Large scale logging especially in the early 1900's also damaged the wetlands.
Answer:
Time period is directly proportional to the length so if the length is doubled the time period is doubled
hope it is helpful....
First of all, you didn't tell us WHO measured the "10 years".
If it was the people on Earth, then 10 years passed according to them.
If it was 10 years on the space traveler's clock, then the clock in the
OTHER place, like on Earth, is subject to the relativistic 'time dilation'.
If the clocks are moving relative to each other, then the time interval measured
on either clock is equal to the interval measured on the other clock, divided by
√(1 - v²/c²) .
You said that v/c = 0.85 .
v²/c² = (0.85)² = 0.7225
1 - v²/c² = 1 - 0.7225 = 0.2775
√(1 - v²/c²) = √0.2775 = 0.5268
If one clock counts up 10 years, then the other one counts up
(10years) / 0.5268 = <em>18.983 years </em>
I believe that's the way to do this, and I'll gladly take your points,
but let me recommend that you get a second opinion before you
actually take off on your 10-year interstellar mission.
What happens when you put them together is you will make a stronger magnet that will pick up alot of metal