I am sorry if I am wrong but, the net force would be zero. 0
Answer:
V₀y = 0 m/s
t = 2.47 s
V₀ₓ = 61.86 m/s
Vₓ = 61.86 m/s
Explanation:
Since, the ball is hit horizontally, there is no vertical component of velocity at initial point. So, the initial vertical velocity (V₀y) will beL
<u>V₀y = 0 m/s</u>
For the initial vertical velocity of golf ball we consider the vertical motion and apply 2nd equation of motion:
Y = V₀y*t + (0.5)gt²
where,
Y = Height = 30 m
g = 9.8 m/s²
t = time to hit the ground = ?
Therefore,
30 m = (0 m/s)(t) + (0.5)(9.8 m/s²)t²
t² = 30 m/4.9 m/s²
t = √6.122 s²
<u>t = 2.47 s</u>
For initial vertical velocity we analyze the horizontal motion of the ball. We neglect the frictional effects in horizontal motion thus the speed remains uniform. Hence,
V₀ₓ = Xt
where,
V₀ₓ = Initial vertical Velocity = ?
X = Horizontal Distance = 25 m
Therefore,
V₀ₓ = (25 m)(2.47 s)
<u>V₀ₓ = 61.86 m/s</u>
<u></u>
Due, to uniform motion in horizontal direction:
Final Vertical Velocity = Vₓ = V₀ₓ
Vₓ = 61.86 m/s
The velocity of the girl is -4.8 m/s.
Using the principle of conservation of linear momentum, The total momentum of bodies before and after collision is constant. Since the two objects are stationary, the initial momentum of each body is zero.
Thus;
0 = (80 × 3) + (50 × v)
0 = 240 + 50 v
-240 = 50 v
v = -240/50
v = -4.8 m/s
Note that the negative sign shows that the velocity of the girl is in opposite direction that that of the girl.
Learn more about momentum: brainly.com/question/904448
That would be true because a solid object can cast a shadow