<h2>
Answer:</h2>
<em>Hello, </em>
<h3><u>
QUESTION)</u></h3>
<em>✔ We have: KE = PE (potential energy) </em>
<em>PE = m x g x h </em>
The potential energy that the pebble of mass 1 has is called PE1 and the potential energy that the pebble of mass 2 has is called PE2
PE1 = PE2 ⇔ PE1/PE2 = 1

The mass m1 is therefore 4 times greater than that of the stone of mass m2.
Answer:
The minimum frequency is 702.22 Hz
Explanation:
The two speakers are adjusted as attached in the figure. From the given data we know that
=3m
=4m
By Pythagoras theorem

Now
The intensity at O when both speakers are on is given by

Here
- I is the intensity at O when both speakers are on which is given as 6

- I1 is the intensity of one speaker on which is 6

- δ is the Path difference which is given as

- λ is wavelength which is given as

Here
v is the speed of sound which is 320 m/s.
f is the frequency of the sound which is to be calculated.

where k=0,1,2
for minimum frequency
, k=1

So the minimum frequency is 702.22 Hz
Answer:
Electrons are located in specific orbit corresponding to discrete energy levels
Explanation:
In Bohr's model of the atom, electron orbit the nucleus in specific levels, each of them corresponding to a specific energy. The electrons cannot be located in the space between two levels: this means that only some values of energy are possible for the electrons, so the energy levels are quantized.
A confirmation of Bohr's model is found in the spectrum of emission of gases. In fact, when an electron jumps from a higher energy level to a lower energy level, it emits a photon whose energy is exactly equal to the difference in energy between the two levels: since the energy levels are discrete, this means that the emitted photons cannot have any value of wavelength, but also their wavelength will appear as a discrete spectrum. This is exactly what it is observed in the spectrum of emission of gases.
Answer:
e=mc2 made to relate mass with energy . bcoz energy can neither b created nor b destroyed