1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pickupchik [31]
3 years ago
10

A traveling wave on a string can be described by the equation : y = (5.26 ~\text{m}) \cdot \sin \big( (1.65 ~\frac{\text{rad}}{\

text{m}})x - (4.64 ~\frac{\text{rad}}{\text{sec}})t +(1.33 ~\text{rad}) \big)y=(5.26 m)⋅sin((1.65 ​m ​ ​rad ​​ )x−(4.64 ​sec ​ ​rad ​​ )t+(1.33 rad)) How much time will it take for a peak on this traveling wave to propagate a distance of 5.00 meters along the length of the string?
Physics
1 answer:
zloy xaker [14]3 years ago
3 0

Answer:

  t = 1.77 s

Explanation:

The equation of a traveling wave is

       y = A sin [2π (x /λ -t /T)]

where A is the oscillation amplitude, λ the wavelength and T the period

the speed of the wave is constant and is given by

      v = λ f

Where the frequency and period are related

     f = 1 / T

we substitute

      v = λ / T

let's develop the initial equation

    y = A sin [(2π / λ) x - (2π / T) t +Ф]

where Ф is a phase constant given by the initial conditions

the equation given in the problem is

    y = 5.26 sin (1.65 x - 4.64 t + 1.33)

if we compare the terms of the two equations

 

         2π /λ = 1.65

          λ = 2π / 1.65

          λ = 3.81 m

         2π / T = 4.64

          T = 2π / 4.64

          T = 1.35 s

we seek the speed of the wave

           v = 3.81 / 1.35

           v = 2.82 m / s

           

Since this speed is constant, we use the uniformly moving ratios

          v = d / t

           t = d / v

           t = 5 / 2.82

           t = 1.77 s

You might be interested in
Which statement is true? A Displacement can never be greater than distance. B Displacement can never be less than distance. C Di
qwelly [4]

Answer:

__________________

I think the answer is A.

__________________

3 0
3 years ago
Luis wants to compare the density of three solid objects that are different shapes and sizes. What information does he need to m
tatyana61 [14]

Answer:

u need to make sure that comparison is = to shapes and then find the shapes sizes and add them

7 0
3 years ago
A crate with a mass of 110 kg glides through a space station with a speed of 4.0 m/s. An astronaut speeds it up by pushing on it
Darina [25.2K]

Answer:

The final speed of the crate after the astronaut push to slow it down is 4.50 m/s

Explanation:

<u>Given:  </u>

The crate has mass m = 110 kg and an initial speed vi = 4 m/s.  

<u>Solution  </u>

We are asked to determine the final speed of the crate. We could apply the steps for energy principle update form as next  

Ef=Ei+W                                                 (1)

Where Ef and Ei are the find and initial energies of the crate (system) respectively. While W is the work done by the astronaut (surrounding).  

The system has two kinds of energy, the kinetic energy which associated with its motion and the rest energy where it has zero speed. The summation of both energies called the particle energy. So, equation (1) will be in the form  

(Kf + mc^2) = (KJ+ mc^2)                       (2)  

Where m is the mass of crate, c is the speed of light which equals 3 x 10^8 m/s and the term mc^2 represents the energy at rest and the term K is the kinetic energy.  

In this case, the rest energy doesn't change so we can cancel the rest energy in both sides and substitute with the approximate expression of the kinetic energy of the crate at low speeds where K = 1/2 mv^2 and equation (2) will be in the form

(1/2mvf^2+mc^2)=(1/2mvi^2 +mc^2)+W

1/2mvf^2=1/2mvi^2+W                              (3)

Now we want to calculate the work done on the crate to complete our calculations. Work is the amount of energy transfer between a source of an applied force and the object that experiences this force and equals the force times the displacement of the object. Therefore, the total work done will be given by  

W = FΔr                                                      (4)  

Where F is the force applied by the astronaut and equals 190 N and Δr is the displacement of the crate and equals 6 m. Now we can plug our values for F and Δr to get the work done by the astronaut  

W = F Δr= (190N)(6 m) = 1140 J  

Now we can plug our values for vi, m and W into equation (3) to get the final speed of the crate  

1/2mvf^2=1/2mvi^2+W

vf=5.82 m/s

This is the final speed of the first push when the astronaut applies a positive work done. Then, in the second push, he applies a negative work done on the crate to slow down its speed. Hence, in this case, we could consider the initial speed of the second process to be the final speed of the first process. So,  

vi' = vf

In this case, we will apply equation (3) for the second process to be in the

1/2mvf^2=1/2mvi'^2+W'                                 (3*)

The force in the second process is F = 170 N and the displacement is 4 m. The force and the displacement are in the opposite direction, hence the work done is negative and will be calculated by  

W'= —F Δr = —(170N)(4 m)= —680J

Now we can plug our values for vi' , m and W' into equation (3*) to get the final speed of the crate  

1/2mvf'^2=1/2mvi'^2+W'

  vf'=4.50 m/s

The final speed of the crate after the astronaut push to slow it down is 4.50 m/s

7 0
3 years ago
The following best describes how an anthropogenic activity can increase ocean acidification?<br>​
worty [1.4K]

Answer:

Emissions from power plants that burn fossil fuels increase atmospheric carbon dioxide, which is absorbed by the ocean.

Explanation:

Fossil fuels are burnt in power plants in order to produce energy. These fossil fuels contain carbon. Combustion of these fossil fuels emits oxides of carbon into the atmosphere. The oxides of carbon are carbon II oxide and carbon dioxide.

Carbon dioxide can be absorbed by the ocean to form carbonic acid according to the reaction equation;

CO2(aq) + H2O(l) ------> H2CO3(aq)

This is an anthropogenic activity which increases ocean acidification.

6 0
3 years ago
What is the thermal efficiency of a gas power cycle using thermal energy reservoirs at 627°C and 90°C?
vlada-n [284]

Answer:

The value is \eta = 63\%

Explanation:

Generally the thermal efficiency is mathematically represented as

\eta =  1 -  \frac{T_L}{T_H} * 100

substituting  [ 627°C + 273  =  900K ]  for  T_H and    [ 90°C + 273  =  333K ]  for T_L

   So  

         \eta =  1 -  \frac{333}{900} *100

=>     \eta = 63\%

5 0
3 years ago
Other questions:
  • Zad. 1. Jaką pracę wykona dźwig, który pracował przez 1,5 h napędzany silnikiem o mocy 200 kW?
    5·1 answer
  • An element's atomic number is 58. How many protons would an atom of this element have?
    7·1 answer
  • What affects the braking distance and thinking distance
    10·2 answers
  • You are sliding across a hockey rink and catch a hockey puck as you continue to slide. What type of collision is this?
    5·2 answers
  • Estimate the number of gallons of gasoline consumed by the total of all automobile drivers in the U.S., per year. Suppose that t
    8·2 answers
  • Consider a cyclotron in which a beam of particles of positive charge q and mass m is moving along a circular path restricted by
    12·1 answer
  • What is the total electric flux due to these two point charges through a spherical surface centered at the origin and with radiu
    5·1 answer
  • What does the color of a star determine
    15·1 answer
  • A student is considering doing a complete repeated measures design experiment involving motor skills. The student's advisor has
    14·1 answer
  • A concave mirror has a radius of curvature of 1.6m. Find the focal length
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!