Answer:
-589.05 J
Explanation:
Using work-kinetic energy theorem, the work done by friction = kinetic energy change of the base runner
So, W = ΔK
W = 1/2m(v₁² - v₀²) where m = mass of base runner = 72.9 kg, v₀ = initial speed of base runner = 4.02 m/s and v₁ = final speed of base runner = 0 m/s(since he stops as he reaches home base)
So, substituting the values of the variables into the equation, we have
W = 1/2m(v₁² - v₀²)
W = 1/2 × 72.9 kg((0 m/s)² - (4.02 m/s)²)
W = 1/2 × 72.9 kg(0 m²/s² - 16.1604 m²/s²)
W = 1/2 × 72.9 kg(-16.1604 m²/s²)
W = 1/2 × (-1178.09316 kgm²/s²)
W = -589.04658 kgm²/s²
W = -589.047 J
W ≅ -589.05 J
Both answers are going to be C
Answer:
F = 147,78*10⁻⁹ [N]
Explanation:
By symmetry the Fy components of the forces acting on charge in point x = 0,7 m canceled each other, and the total force will be twice Fx ( Fx is x axis component of one of the forces .
The angle β ( angle between the line running through one of the charges in y axis and the charge in x axis) is
tan β = 0,5/0,7
tan β = 0,7142 then β = arctan 0,7142 ⇒ β = 35 ⁰
cos β = 0,81
d = √ (0,5)² + (0,7)² d1stance between charges
d = √0,25 + 0,49
d = √0,74 m
d = 0,86 m
Now Foce between two charges is:
F = K* q₁*q₂/ d² (1)
Where K = 9*10⁹ N*m²/C²
q₁ = 2,5* 10⁻⁹C
q₂ = 3,0*10⁻⁹C
d² = 0,74 m²
Plugging these values in (1)
F = 9*10⁹* 2,5* 10⁻⁹*3,0*10⁻⁹ / 0,74 [N*m²/C²]*C*C/m²
F = 91,21 * 10⁻⁹ [N]
And Fx = F*cos β
Fx = 91,21 * 10⁻⁹ *0,81
Fx =73,89*10⁻⁹ [N]
Then total force acting on charge located at x = 0,7 m is:
F = 2* Fx
F = 2*73,89*10⁻⁹ [N]
F = 147,78*10⁻⁹ [N]
Gravity is counteracted by centripetal force, due to acceleration, which is the force that pushes you into your seat.
<u>Temperature of the air</u>
According to sources, the most probable answer to this query is that the wet bulb is directly proportional to the temperature of the air. Thank you for your question. Please don't hesitate to ask in Brainly your queries.