Answer: 3.59
Explanation:
(2.06)(1.743)(1.00)
2.06 × 1.743 × 1.00
= 3.59058
Two of the multiplied digits are represented in 3 significant figures. Therefore, for correct representation, the result of the product should be written to three significant figures.
3.59058 to 3 significant figures:
First three digits = 3.59
Fourth digit '0' is less than 5, and thus rounded to 0 with other succeeding digits
Therefore, (2.06)(1.743)(1.00) to 3 significant figures equals :
3.59
Answer:
The final balanced equation is
Ni2+ + 2NaOH --> Ni (OH)2 + 2Na+
Explanation:
It is given that sodium hydroxide is added to collect the solid nickel(II) hydroxide product
The empirical equation for this statement is
Ni2+ + NaOH --> Ni (OH)2 + Na+
We will first balance the hydroxide molecule. On the right side there are two OH molecules.
Thus, on the left side we will take 2 sodium hydroxide
Ni2+ + 2NaOH --> Ni (OH)2 + Na+
Now we will balance the sodium ion which are 2 in numbers on the left side and 1 on the right side
Ni2+ + 2NaOH --> Ni (OH)2 + 2Na+
So, the final balanced equation is
Ni2+ + 2NaOH --> Ni (OH)2 + 2Na+
The charge balance equation for an aqueous solution of H₂CO₃ that ionizes to HCO₃⁻ and CO₃⁻² is [HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
<h3>What is Balanced Chemical Equation ?</h3>
The balanced chemical equation is the equation in which the number of atoms on the reactant side is equal to the number of atoms on the product side in an equation.
The equation for aqueous solution of H₂CO₃ is
H₂CO₃ → H₂O + CO₂
The charge balance equation is
[HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
Thus from the above conclusion we can say that The charge balance equation for an aqueous solution of H₂CO₃ that ionizes to HCO₃⁻ and CO₃⁻² is [HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
Learn more about the Balanced Chemical equation here: brainly.com/question/26694427
#SPJ4
Animalia and Plantae
Hope that helps