Answer:
Cuadrilátero A: 
Cuadrilátero B: 
Step-by-step explanation:
Existen dos formas distintas de determinar las áreas de cada cuadrilátero:
(i) <em>Obtener el área de cada cuadrado y sumar los resultados.</em>
(ii) <em>Calcular los lados del cuadrilátero grande y determinar el área. </em>
Cuadrilátero A
Método (i)


Método (ii)


Cuadrilátero B
Método (i)


Método (ii)


Answer:
12$
Step-by-step explanation:
74 - 4(1.50+3+2) = 48
48 / 4 = 12
Answer:
Perimeter of Δ ABC = 7 + 8 + 9 = 24 cm
Step-by-step explanation:
In triangle Δ XYZ ,
A is the mid point of XY
B is the midpoint of YZ
C is the mid point of XZ
AY = 7
BZ =8
XZ = 18
The mid - point theorem states that,
The segment formed by connecting two mid - points of a triangle is parallel to the third side and half as long
AY = 7 then BC = 7 cm
BZ = 8 then AC = 8 cm
XY = 18 then AB = 9 cm
Perimeter of Δ ABC = 7 + 8 + 9 = 24 cm
Speed = m x t. as the equation
Answer:
400 m^2.
Step-by-step explanation:
The largest area is obtained where the enclosure is a square.
I think that's the right answer because a square is a special form of a rectangle.
So the square would be 20 * 20 = 400 m^2.
Proof:
Let the sides of the rectangle be x and y m long
The area A = xy.
Also the perimeter 2x + 2y = 80
x + y = 40
y = 40 - x.
So substituting for y in A = xy:-
A = x(40 - x)
A = 40x - x^2
For maximum value of A we find the derivative and equate it to 0:
derivative A' = 40 - 2x = 0
2x = 40
x = 20.
So y = 40 - x
= 40 - 20
=20
x and y are the same value so x = y.
Therefore for maximum area the rectangle is a square.