1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dangina [55]
3 years ago
11

Please help me solve this problem on similar figures➕➖

Mathematics
2 answers:
tatyana61 [14]3 years ago
7 0

To begin to solve this problem, we need to figure out by what number the sides are similar. That means what do we have to multiply the sides of one triangle to get the sides of the other triangle.


If the longest side of a similar triangle measures 39 centimeters, we can divide 39 by 65 (the longest side of the triangle we know) to figure out what we have to multiply each of the sides of the triangle. 39 / 65 is 0.6, so the triangles are similar by a factor of 0.6.


Since the question asks us for the length of the shortest side, we need to multiply the length of the shortest side of the triangle that we know (25) by 0.6. 25 * 0.6 is 15, so the length of the shortest side of this triangle is 15 cm.

sdas [7]3 years ago
6 0

A similar triangle means it is of a diferent size, but the sides or angles are proportionaly the same.


Use the rule of 3 on each number, to find the equivalent sides:


65 - 39

60 - x


(60 * 39) / 65

2340 / 65

36cm



60 - 36

25 - x


(25*36) / 60

900 / 60

15cm



Original triangle: 65, 60, 25

Similar triangle: 39, 36, 15


Answer:


\boxed{\bf~The~smallest~side~of~the~trianlge~measures~15cm.}




Hope it helped,


Happy homework/ study/ exam!

You might be interested in
Helpppp plssss!!!<br><br>Appreciate you!!
Mice21 [21]
I think it's D. (sorry if i'm wrong)
8 0
3 years ago
Read 2 more answers
The first eight quizzes in this class had average scores of 8,9,9,8,8,9,8,7. This gives a sample mean of 8.25 and a sample stand
alexira [117]

Answer:

<em>Test statistic </em>

<em>               </em>t = \frac{x^{-} -mean}{\frac{S}{\sqrt{n} } }  

            t = <em>1.076</em>

Step-by-step explanation:

<u><em>Step(i):-</em></u>

Given Mean of the Population (μ) = 8.0

<em>Mean of the sample (x⁻) = 8.25</em>

Given data

                  8,9,9,8,8,9,8,7

Given sample size  n= 8

Given sample standard deviation(S) = 0.661

<u><em>Step(ii):-</em></u>

<em>Null hypothesis : H:  (μ) = 8.0</em>

<em>Alternative Hypothesis :H:(μ) > 8.0</em>

<em>Degrees of freedom = n-1 = 8-1=7</em>

<em>Test statistic </em>

<em>               </em>t = \frac{x^{-} -mean}{\frac{S}{\sqrt{n} } }<em></em>

<em>              </em>t = \frac{8.25 -8.0}{\frac{0.661}{\sqrt{8} } }<em></em>

<em>            t =  1.076</em>

<em>Critical value </em>

<em>                    t₍₇,₀.₀₅₎   = 2.3646</em>

<em>The calculated value   t =  1.076 < 2.3646 at 0.05 level of significance</em>

<em>Null hypothesis is accepted</em>

<em>Test the hypothesis that the true mean quiz score is 8.0 against the alternative that it is not greater than 8.0</em>

<em></em>

3 0
3 years ago
HEELLPP plss!!!!!!!!<br><br> Solve
Elanso [62]
The top answer on your screen is the answer. Hope this help
6 0
3 years ago
Find the area of the region enclosed by the graphs of the functions
Vaselesa [24]

Answer:

\displaystyle A = \frac{8}{21}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality<u> </u>

<u>Algebra I</u>

  • Terms/Coefficients
  • Functions
  • Function Notation
  • Graphing
  • Solving systems of equations

<u>Calculus</u>

Area - Integrals

Integration Rule [Reverse Power Rule]:                                                                 \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                      \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Addition/Subtraction]:                                                          \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Area of a Region Formula:                                                                                     \displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Step-by-step explanation:

*Note:

<em>Remember that for the Area of a Region, it is top function minus bottom function.</em>

<u />

<u>Step 1: Define</u>

f(x) = x²

g(x) = x⁶

Bounded (Partitioned) by x-axis

<u>Step 2: Identify Bounds of Integration</u>

<em>Find where the functions intersect (x-values) to determine the bounds of integration.</em>

Simply graph the functions to see where the functions intersect (See Graph Attachment).

Interval: [-1, 1]

Lower bound: -1

Upper Bound: 1

<u>Step 3: Find Area of Region</u>

<em>Integration</em>

  1. Substitute in variables [Area of a Region Formula]:                                     \displaystyle A = \int\limits^1_{-1} {[x^2 - x^6]} \, dx
  2. [Area] Rewrite [Integration Property - Subtraction]:                                     \displaystyle A = \int\limits^1_{-1} {x^2} \, dx - \int\limits^1_{-1} {x^6} \, dx
  3. [Area] Integrate [Integration Rule - Reverse Power Rule]:                           \displaystyle A = \frac{x^3}{3} \bigg| \limit^1_{-1} - \frac{x^7}{7} \bigg| \limit^1_{-1}
  4. [Area] Evaluate [Integration Rule - FTC 1]:                                                    \displaystyle A = \frac{2}{3} - \frac{2}{7}
  5. [Area] Subtract:                                                                                               \displaystyle A = \frac{8}{21}

Topic: AP Calculus AB/BC (Calculus I/II)  

Unit: Area Under the Curve - Area of a Region (Integration)  

Book: College Calculus 10e

6 0
3 years ago
Please help! Correct answer only! This assignment is due today.
vichka [17]

Answer:

  0.2601

Step-by-step explanation:

There are 19C16 = 969 ways for Lester to choose 16 of the 19 objects.

There are 12C11 = 12 ways to choose 11 vases, and 7C5 = 21 ways to choose a non-vase, for a total of (12)(21) = 252 ways to choose exactly 11 vases in 16 objects.

So, the probability of interest is ...

  252/969 ≈ 0.2601

_____

nCk = n!/(k!(n-k)!) ... the number of ways to choose k objects from n

5 0
3 years ago
Other questions:
  • The temperature of a chemical reaction oscillates in the interval 44 degrees Celsius to 50 degrees Celsius. The temperature is a
    10·1 answer
  • Use long division to find the quotient below
    12·1 answer
  • What dose this mean ???
    8·1 answer
  • How do i convert 37/4 into mixed numbers
    5·1 answer
  • The sum of the measures of two exterior angles of a triangle is 264° what is the measure of the third exterior angle
    5·2 answers
  • Could -free, automatic faucets actually be housing more bacteris than the old fashioned, manual kind The concern is that decreas
    14·1 answer
  • Find the surface area of the right rectangular prism shown below.<br> units?<br> 2.5<br> 10<br> 4
    7·1 answer
  • Pls help fast will get brainliest
    14·1 answer
  • The volume of the prism shown below is 84 cubic yards. What is the height, h, of the prism?
    5·1 answer
  • Figure ABCD is transformed to obtain figure A′B′C′D′:
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!