Answer:
1.73 Molar
Explanation:
The formula is Molarity=moles of solute/liters of solution, which can be written in whatever way you prefer, and examples include: M=N/V or M=mol/L.
M=N/V
M= 
Divide 5.63 by 3.25. When you calculate this, you get 1.73, therefore your answer is 1.73 molar.
Due to heat , the kinetic energy of the atoms in the substance increases due to which they start vibrating vigorously and the inter-molecular attraction decreases and the substance increases in volume. For example, on boiling water...heat energy imparted makes the volume increase and finally turn into steam or water vapour in air.(The inter-molecular space in air is more than that in water.)
"The boron-nitrogen interaction in the studied molecules shows some similarities with the N→B bond in the H3N-BH3 molecule, formally understood as covalent-dative. ... The results show that all the studied BN bonds are triple, since three two-center orbitals have been obtained."
"Formation of a dative bond or coordinate bond between ammonia and boron trifluoride. When the nitrogen donates a pair of electrons to share with the boron, the boron gains an octet. ... In addition, a pair of non-bonding electrons becomes bonding; they are delocalized over two atoms and become lower in energy."