Option E, Real gas particles have more complex interactions than ideal gas particles.
In ideal gases, there is absolutely no interaction between any atoms. At all. Atoms simply don't bump into each other in ideal gases.
Obviously, you know that's unrealistic. In real gases, atoms collide into each other all the time.
-T.B.
Answer: B) the forces in the solid hold the atoms tightly in place
Explanation:This is because there is no room for the atoms to move around much and because they are very close together which makes the phase a solid.
<h2>Let us predict the gas and liquid products in option </h2>
Explanation:
option 1 : 2 upper H g upper O (s) right arrow 2 upper H g (l) plus upper O subscript 2 (g).
Chemical reaction
It is the reactants react to form products .
Chemical equation
It is the method of representing reaction in terms of moles , specifying states , symbols , molecular formulas etc .
This actually gives the complete info about the reaction .
In the above asked question or any other question we can specify the states by writting :
Solid as "S".
Liquid as "L"
Gas as (g).
pH=4.625
The classification of this sample of saliva : acid
<h3>Further explanation</h3>
The water equilibrium constant (Kw) is the product of concentration
the ions:
Kw = [H₃O⁺] [OH⁻]
Kw value at 25° C = 10⁻¹⁴
It is known [OH-] = 4.22 x 10⁻¹⁰ M
then the concentration of H₃O⁺:
![\tt 10^{-14}=4.22\times 10^{-10}\times [H_3O^+]\\\\(H_3O^+]=\dfrac{10^{-14}}{4.22\times 10^{-10}}=2.37\times 10^{-5}](https://tex.z-dn.net/?f=%5Ctt%2010%5E%7B-14%7D%3D4.22%5Ctimes%2010%5E%7B-10%7D%5Ctimes%20%5BH_3O%5E%2B%5D%5C%5C%5C%5C%28H_3O%5E%2B%5D%3D%5Cdfrac%7B10%5E%7B-14%7D%7D%7B4.22%5Ctimes%2010%5E%7B-10%7D%7D%3D2.37%5Ctimes%2010%5E%7B-5%7D)
pH=-log[H₃O⁺]
Saliva⇒acid(pH<7)
Answer:
Explanation:
Assume we have 100g of this substance. That means we would have 20.24g of Cl and 79.76g of Al. Now we can find how many moles of each we have:
= 2.25 mol of chlorine
= 0.750 mol of Al.
To form a integer ratio, do 2.25/0.75 = 2.99999 ~= 3.
So the ratio is essentially Al : Cl => 1 : 3. To the compound is possibly
.
However, it says it has a molar mass of 266.64 g/mol, and since AlCl3 has a molar mass of 133.32, it must be
.
Actually this molecule isn't exactly AlCl3 (which is ionic). Al2Cl6 forms a banana bond where Cl acts as a hapto-2 ligand. But that's a bit advanced. All you need to know is X = Al2Cl6