These are dissolved in water to form colourless solutions, and then mixed together. This mixing leads to a double displacement reaction, essentially resulting in the metals 'swapping' their places in the two compounds, producing lead (II) iodide, and potassium nitrate.
1) Compund Ir (x) O(y)
2) Mass of iridium = mass of crucible and iridium - mass of crucible = 39.52 g - 38.26 g = 1.26 g
3) Mass of iridium oxide = mass of crucible and iridium oxide - mass of crucible = 39.73g - 38.26g = 1.47g
4) Mass of oxygen = mass of iridum oxide - mass of iridium = 1.47g - 1.26g = 0.21g
5) Convert grams to moles
moles of iridium = mass of iridium / molar mass of iridium = 1.26 g / 192.17 g/mol = 0.00656 moles
moles of oxygen = mass of oxygen / molar mass of oxygen = 0.21 g / 15.999 g/mol = 0.0131
6) Find the proportion of moles
Divide by the least of the number of moles, i.e. 0.00656
Ir: 0.00656 / 0.00656 = 1
O: 0.0131 / 0.00656 = 2
=> Empirical formula = Ir O2 (where 2 is the superscript for O)
Answer: Ir O2
Answer:
The three laws of Chemical Reaction are .The law of constant proportions. The law of multiple proportions. The law of reciprocal proportions.
A chemical compound is always found to be made up of the same elements combined together in the same fixed proportion by mass.
potassium and chlorine gas ---> chloride.
Hope this helps, have a good day.✌
Answer:
trigonal pyramidal
Explanation:
In NF3, the nitrogen atom is sp3 hybridized. Now we must remember that according to the VSEPR theory, the number of electron pairs in the valence shell of the central atom in a molecule determines its shape.
Here, the nitrogen atom is the central atom and its outermost shell is surrounded by four electron pairs - one lone pair and three bond pairs. This means that it has a tetrahedral electron pair geometry.
However, due to the lone pair, the three fluorine atoms are arranged in a trigonal pyramidal geometry. Hence the correct shape of the molecule is trigonal pyramidal.