Answer:
a. Gly-Lys + Leu-Ala-Cys-Arg + Ala-Phe
b. Glu-Ala-Phe + Gly-Ala-Tyr
Explanation:
In this case, we have to remember which peptidic bonds can break each protease:
-) <u>Trypsin</u>
It breaks selectively the peptidic bond in the carbonyl group of lysine or arginine.
-) <u>Chymotrypsin</u>
It breaks selectively the peptidic bond in the carbonyl group of phenylalanine, tryptophan, or tyrosine.
With this in mind in "peptide a", the peptidic bonds that would be broken are the ones in the <u>"Lis"</u> and <u>"Arg"</u> (See figure 1).
In "peptide b", the peptidic bond that would be broken is the one in the <u>"Phe"</u> (See figure 2). The second amino acid that can be broken is <u>tyrosine</u>, but this amino acid is placed in the <u>C terminal spot</u>, therefore will not be involved in the <u>hydrolysis</u>.
they will both do the exact same thing, as long as they are bothh identical
Answer:
That would be helium, with a melting point of 0.95 K (-272.20 °C)—although this happens only under considerable pressure (~25 atmospheres). At ordinary pressure, helium would remain liquid even if it could be chilled to absolute zero.
Answer:
— Molten Potassium Chlorate + sugar (gummi bear) ->