Answer:
Ag+(aq) + Cl-(aq) —> AgCl(s)
Explanation:
2AgNO3(aq) + CaCl2(aq) —>2AgCl(s) + Ca(NO3)2(aq)
The balanced net ionic equation for the reaction above can be obtained as follow:
AgNO3(aq) and CaCl2(aq) will dissociate in solution as follow:
AgNO3(aq) —> Ag+(aq) + NO3-(aq)
CaCl2(aq) —> Ca2+(aq) + 2Cl-(aq)
AgNO3(aq) + CaCl2(aq) –>
2Ag+(aq) + 2NO3-(aq) + Ca2+(aq) + 2Cl-(aq) —> 2AgCl(s) + Ca2+(aq) + 2NO3-(aq)
Cancel out the spectator ions i.e Ca2+(aq) and 2NO3- to obtain the net ionic equation.
2Ag+(aq) + 2Cl-(aq) —> 2AgCl(s)
Divide through by 2
Ag+(aq) + Cl-(aq) —> AgCl(s)
The, the net ionic equation is
Ag+(aq) + Cl-(aq) —> AgCl(s)
Answer:
He2 molecule contains 4 electrons. Each atom gives 2 electrons in 1s orbitals. This way 2 (1s) orbitals combine to give 2 molecular orbitals viz. ... This indicates that there is no bond formation between 2 HE atoms and hence the He2 molecule does not exist.
Explanation:
Answer:
Acid-base indicators are chemicals used to determine whether an aqueous solution is acidic, neutral, or alkaline. Because acidity and alkalinity relate to pH, they may also be known as pH indicators. Examples of acid-base indicators include litmus paper, phenolphthalein, and red cabbage juice.
Explanation:
Answer:
d = 1.8 × 10⁻⁴ kg/L
Explanation:
Given data:
Moles of helium = 2 mol
Temperature and pressure = standard
Density = ?
Solution:
PV = nRT
V = nRT/ P
V = 2 mol × 0.0821 atm. L/ mol. K × 273 K / 1 atm
V = 44.8 L
Mass of helium:
Mass = number of moles × molar mass
Mass = 2 mol × 4 g/mol
Mass = 8 g
Mass = 0.008 kg
Density;
Density = mass/ volume
d = 0.008 kg/ 44.8 L
d = 1.8 × 10⁻⁴ kg/L