v2 = ?
m1 = 10kg
m2 = 70kg
v1 = 4m/s
E1 = E2
E1 = 1/2 * m1 * v1^2 = 1/2 * 10kg * 4m/s^2 = 80J
E2 = 1/2 * m2 * v2^2 = 80 J
v2 = √(E2/(2 * m2)) = √(80J/(2 * 70kg)) = about 0.76m/s
Answer:
The length of open-open pipe needed is 6.23 m
The length of open-close pipe needed is 3.11 m
Explanation:
Fundamental frequency for standing wave mode of an open- open pipe is given by

where v is the velocity and L is the length
The length of open-open pipe needed is

Fundamental frequency for standing wave mode of an open- close pipe is given by

The length of open-close pipe needed is

Answer:
T2=336K
Explanation:
Clausius-Clapeyron equation is used to determine the vapour pressure at different temperatures:
where:
In(P2/P1) = ΔvapH/R(1/T1 - 1/T2)
p1 and p2 are the vapour pressures at temperatures
T1 and T2
ΔvapH = the enthalpy of vaporization of the liquid
R = the Universal Gas Constant
p1=p1, T1=307K
p2=3.50p1; T2=?
ΔvapH=37.51kJ/mol=37510J/mol
R=8.314J.K^-1moL^-1
In(3.50P1/P1)= (37510J/mol)/(8.314J.K^-1)*(1/307 - 1/T2)
P1 and P1 cancelled out:
In(3.50)=4511.667(T2 - 307/307T2)
1.253=14.696(T2 - 307/T2)
1.253=(14.696T2) - (14.696*307)/T2
1.253T2=14.696T2 - 4511.672
Therefore,
4511.672=14.696T2 - 1.253T2
4511.672=13.443T2
So therefore, T2=4511.672/13.443=335.61
Approximately, T2=336K
The equation for electric potential of a point charge is:
V=(k*q)/r where k=9*10^11 N m²/C², q is the charge and r is the distance from the charge to the point in which we are calculating the potential.
q=-5.2*10^-6 C
r=12 cm = 0.12 m
Now we plug in the numbers and get:
V=-3.9*10^5 Volts, so the correct answer is the second one.