Climate is the average weather type throughout the year while weather is something that can happen just once a day, not the average though.
Answer:
This galaxy belongs to the elliptical galaxy category. This is because it does not have spiral arms.
Answer:

Explanation:
The speed increased from 2.0 * 10^7 m/s to 4.0 * 10^7 m/s over a 1.2 cm distance.
Let us find the acceleration:


Electric force is given as the product of charge and electric field strength:
F = qE
where q = electric charge
E = Electric field strength
Force is generally given as:
F = ma
where m = mass
a = acceleration
Equating both:
ma = qE
E = ma / q
For an electron:
m = 9.11 × 10^{-31} kg
q = 1.602 × 10^{-19} C
Therefore, the electric field strength of the electron is:

Answer:
3331.5 kg
Explanation:
Given:
Spring constant of the spring (k) = 24200 N/m
Frequency of oscillation (f) = 0.429 Hz
Let the mass be 'm' kg.
Now, we know that, a spring-mass system undergoes Simple Harmonic Motion (SHM). The frequency of oscillation of SHM is given as:

Rewrite the above equation in terms of 'm'. This gives,

Now, plug in the given values and solve for 'm'. This gives,

Therefore, the mass of the truck is 3331.5 kg.
:<span> </span><span>The gradient of the curve 1/x at x=2 is m = -¼
We may choose any length of line to represent the direction of the slope (direction vector) at that point. We could choose a line for which x = 2 and then y would have to be -½ so that the gradient is still = -½/2 = -¼. It is simply convenient to choose a unit length for x, making y = -¼ The length of the resultant of x and y is √(1²+¼²) = √(17/16) = √(17)/4 which is a direction vector. If we had taken the direction vector to be (2, ½) then we would have a resultant direction vector of √17/2. It doesn't really matter what length the direction vector is - it's job is only to show the direction. So their choice of 1 is quite arbitrary but convenient, since it is easy to work with units – that's why we use units!
Now, we know that the magnitude of the velocity vector must be 5 and the magnitude of our direction vector at the moment is √(17)/4. We therefore need to multiply this direction vector by 20/√(17) to get 5 – just try it : √(17)/4 × 20/√(17) = 5.
We could equally well have done this with (2, ½) and would have got 2½ for lambda.</span>