Answer:
Given the area A of a flat surface and the magnetic flux through the surface
it is possible to calculate the magnitude
.
Explanation:
The magnetic flux gives an idea of how many magnetic field lines are passing through a surface. The SI unit of the magnetic flux
is the weber (Wb), of the magnetic field B is the tesla (T) and of the area A is (
). So 1 Wb=1 T.m².
For a flat surface S of area A in a uniform magnetic field B, with
being the angle between the vector normal to the surface S and the direction of the magnetic field B, we define the magnetic flux through the surface as:

We are told the values of
and B, then we can calculate the magnitude

Can you show the full question?
Answer: velocity = -0.65 speed =0.65
Explanation:
Velocity =speed+direction speed =distance/time
Answer:
The magnitude of the force required to bring the mass to rest is 15 N.
Explanation:
Given;
mass, m = 3 .00 kg
initial speed of the mass, u = 25 m/s
distance traveled by the mass, d = 62.5 m
The acceleration of the mass is given as;
v² = u² + 2ad
at the maximum distance of 62.5 m, the final velocity of the mass = 0
0 = u² + 2ad
-2ad = u²
-a = u²/2d
-a = (25)² / (2 x 62.5)
-a = 5
a = -5 m/s²
the magnitude of the acceleration = 5 m/s²
Apply Newton's second law of motion;
F = ma
F = 3 x 5
F = 15 N
Therefore, the magnitude of the force required to bring the mass to rest is 15 N.
We have the equation for electric field E = kQ/
Where k is a constant, Q is the charge of source and d is the distance from center.
In this case E is inversely proportional to 
So, 
= 485 N/C
= 0.208 cm
= 0.620 cm
= ?

= 
= 53.20 N/C