Honestly i don’t know but I’d just guess if I were you
F=nmv
where;
n=no. of bullets = 1
m=mass of bullets=2g *10^-3
V=velocity of bullets200m/sec
F=1
loss in Kinetic energy=gain in heat energy
1/2MV^2=MS∆t
let M council M
=1/2V^2=S∆t
M=2g
K.E=MV^2/2
=(2*10^-3)(200)^2/2
2 councils 2
2*10^-3*4*10/2
K.E=40Js
H=mv∆t
(40/4.2)
40Js=40/4.2=mc∆t
40/4.2=2*0.03*∆t
=158.73°C
Answer:
The difference in the length of the bridge is 0.42 m.
Explanation:
Given that,
Length = 1000 m
Winter temperature = 0°C
Summer temperature = 40°C
Coefficient of thermal expansion 
We need to calculate the difference in the length of the bridge
Using formula of the difference in the length

Where,
= temperature difference
=Coefficient of thermal expansion
L= length
Put the value into the formula


Hence, The difference in the length of the bridge is 0.42 m.
<u>First Symbol </u>: Cobalt (Co)
Its Group Number - 9
Its Period Number - 4
Its Family Name - Transition Metal
<u>Second Symbol</u> : Silicon (Si)
Its Group Number - 14
Its Period Number - 2
Its Family Name - Semiconductor
<u>Third Symbol</u> : Astatine (At)
Its Group Number - 17
Its Period Number - 6
Its Family Name - Halogen
<u>Fourth Symbol </u>: Magnesium (Mg)
Its Group Number - 2
Its Period Number - 3
Its Family Name - Alkaline Earth Metal
<u>Fifth Symbol</u> : Xenon (Xe)
Its Group Number - 18
Its Period Number - 5
Its Family Name - Noble Gas