(a) 5.66 m/s
The flow rate of the water in the pipe is given by

where
Q is the flow rate
A is the cross-sectional area of the pipe
v is the speed of the water
Here we have

the radius of the pipe is
r = 0.260 m
So the cross-sectional area is

So we can re-arrange the equation to find the speed of the water:

(b) 0.326 m
The flow rate along the pipe is conserved, so we can write:

where we have

and where
is the cross-sectional area of the pipe at the second point.
Solving for A2,

And finally we can find the radius of the pipe at that point:

Answer:
10m
Explanation:
The object distance and image distance is the same from the mirror. so the image is 5m behind the mirror.
5+5=10
Answer:
- No, this doesn't mean the electric potential equals zero.
Explanation:
In electrostatics, the electric field
is related to the gradient of the electric potential V with :

This means that for constant electric potential the electric field must be zero:





This is not the only case in which we would find an zero electric field, as, any scalar field with gradient zero will give an zero electric field. For example:

give an electric field of zero at point (0,0,0)
Initial velocity = 
acceleration in the downward direction = -9.8 
Final velocity at the highest point = 0
Maximum height reached = 0.410 m
Now, Using third equation of motion:




Speed with which the flea jumps = 
Answer:
where the y axis is
Explanation:
In more simple terms, a horizontal line on any chart is where the y-axis values are equal. If it has been drawn to show a series of highs in the data, a data point moving above the horizontal line would indicate a rise in the y-axis value over recent values in the data sample.