Answer: Hello!
In a normal distribution, between the mean and the mean plus the standar deviation, there is a 34.1% of the data set, between the mean plus the standar deviation, and the mean between two times the standard deviation, there is a 16.2% of the data set, and so on.
If our mean is 16 inches, and the measure is 26 inches, then the difference is 10 inches between them.
a) if the standar deviation is 2 inches, then you are 10/2 = 5 standar deviations from the mean.
b) yes, is really far away from the mean, in a normal distribution a displacement of 5 standar deviations has a very small probability.
c) Now the standar deviation is 7, so now 26 is in the range between 1 standar deviation and 2 standar deviations away from the mean.
Then this you have a 16% of the data, then in this case, 26 inches is not far away from the mean.
Answer:
Step-by-step explanation: what are the dimensions
Answer:
I believe it is A!!!!!
Step-by-step explanation:
I took the test E2020
Answer:
The remainder is 0 ⇒ 3rd answer
Step-by-step explanation:
* In the synthetic calculation we use the coefficient of the dividend
with the value of x when the divisor = 0
∵ x - 1 = 0 ⇒ add 1 to both sides
∴ x = 1
Step 1 : Write down the coefficients of the f(x) , put x = 1 at the left
1 1 0 -1 1 -1
________________
Step 2 : Bring down the first coefficient to the bottom row.
1 1 0 -1 1 -1
________________
1
Step 3 : Multiply it by 1, and carry the result into the next column.
1 1 0 -1 1 -1
____ 1_________
1
Step 4 : Add down the column
1 1 0 -1 1 -1
____1__________
1 1
Step 5 : Multiply it by 1, and carry the result into the next column
1 1 0 -1 1 -1
_____1___1_______
1 1
Step 6 : Add down the column
1 1 0 -1 1 -1
____1___1______
1 1 0
Step 7 : Multiply it by 1, and carry the result into the next column
1 1 0 -1 1 -1
___1___1___0______
1 1 0
Step 8 : Add down the column
1 1 0 -1 1 -1
_____1____1__0_____
1 1 0 1
Step 9 : Multiply it by 1, and carry the result into the next column
1 1 0 -1 1 -1
____1____1___0___1___
1 1 0 1
Step 10 : Add down the column
1 1 0 -1 1 -1
____1____1___0___1___
1 1 0 1 0
∴ The quotient is (x³ + x² + 1 ) and the remainder is 0
* The remainder is 0