it is equal theres your answer np :)
Answer:
The volume of the gas sample at standard pressure is <u>819.5ml</u>
Explanation:
Solution Given:
let volume be V and temperature be T and pressure be P.



1 torr= 1 mmhg
42.2 torr=42.2 mmhg
so,


Now
firstly we need to find the pressure due to gas along by subtracting the vapor pressure of water.

=735-42.2=692.8 mmhg
Now
By using combined gas law equation:



Here
are standard pressure and temperature respectively.
we have

Substituting value, we get


46 is the answer. because if you add 26 and 20 that is the mass
Answer:
1) 2.054 x 10⁻⁴ mol/L.
2) Decreasing the temperature will increase the solubilty of O₂ gas in water.
Explanation:
1) The solubility of O₂ gas in water:
- We cam calculate the solubility of O₂ in water using Henry's law: <em>Cgas = K P</em>,
- where, Cgas is the solubility if gas,
- K is henry's law constant (K for O₂ at 25 ̊C is 1.3 x 10⁻³ mol/l atm),
- P is the partial pressure of O₂ (P = 120 torr / 760 = 0.158 atm).
- Cgas = K P = (1.3 x 10⁻³ mol/l atm) (0.158 atm) = 2.054 x 10⁻⁴ mol/L.
2) The effect of decreasing temperature on the solubility O₂ gas in water:
- Decreasing the temperature will increase the solubilty of O₂ gas in water.
- When the temperature increases, the solubility of O₂ gas in water will decrease because the increase in T will increase the kinetic energy of gas particles and increase its motion that will break intermolecular bonds and escape from solution.
- Decreasing the temperature will increase the solubility of O₂ gas in water will because the kinetic energy of gas particles will decrease and limit its motion that can not break the intermolecular bonds and increase the solubility of O₂ gas.
Answer:
exothermic
Explanation:
This chemical reaction is an exothermic reaction because heat is liberated into the environment.
In organic chemistry, the reaction is termed a combustion reaction. In such a reaction, a fuel combines with oxygen to produce carbon dioxide and water.
It is an energy transformation from chemical energy to heat energy.
- An exothermic reaction is one in which heat is liberated to the surrounding.
- The surrounding becomes hotter at the end of the reaction.
In the reaction depicted, heat is liberated.