An anchoring phenomenon anchors all of the learning within a unit. So, it is a unit level event that the classroom is trying to make sense of as they engage in a series of lessons.
Since the questions the students ask about the anchor drive the learning within the unit, the anchor should be complex and require an understanding of several big science ideas to explain.
At strategic moments, the class revisits the anchoring phenomenon to review their initial questions to see which they have answered, which they are making progress on, and what new questions they may have to help us continue learning about the phenomenon.
Throughout the unit, the classroom and each student should be given opportunities to share their thinking and how it relates to the anchoring phenomenon.
YOU SHOULD PUT IT IN YOUR OWN WORDS THOUGH <3
Answer: Option (D) 30N
Detailed Solution:
According to Newton's second law:
F = ma --- (A)
Given:
mass = 5kg
acceleration = 6 m/s^2
F = ?
Plug all the value in equation (A)
F = (5)(6)
Ans: F = 30N
The top one is different from the bottom because of is curvature shape while the bottom one is a square shape i think the bottom will heat up faster because of the nice even area inside where heat waves can evenly flow