Answer:
Because they are different oxides.
Explanation:
In both processes they are involve Iron Oxides, but in the case of Ellingham diagrams, it is consider the Iron in combination with oxygen to form FeO, so the melting point is around 1600 ºC. In the case of blast furnace, the Fe that is present in the ores, are primary the hematite (Fe2O3) and the magnetite (Fe3O4).
3.8 Meters converts to 380 Centimeters.
I’m so sorry explain it more
B- 8.2980
C- 11.2603
F- 17.4228
Li- 5.3917
Na- 5.1391
I would say your answer is Na.
Answer:
37.1°C.
Explanation:
- Firstly, we need to calculate the amount of heat (Q) released through this reaction:
<em>∵ ΔHsoln = Q/n</em>
no. of moles (n) of NaOH = mass/molar mass = (2.5 g)/(40 g/mol) = 0.0625 mol.
<em>The negative sign of ΔHsoln indicates that the reaction is exothermic.</em>
∴ Q = (n)(ΔHsoln) = (0.0625 mol)(44.51 kJ/mol) = 2.78 kJ.
Q = m.c.ΔT,
where, Q is the amount of heat released to water (Q = 2781.87 J).
m is the mass of water (m = 55.0 g, suppose density of water = 1.0 g/mL).
c is the specific heat capacity of water (c = 4.18 J/g.°C).
ΔT is the difference in T (ΔT = final temperature - initial temperature = final temperature - 25°C).
∴ (2781.87 J) = (55.0 g)(4.18 J/g.°C)(final temperature - 25°C)
∴ (final temperature - 25°C) = (2781.87 J)/(55.0 g)(4.18 J/g.°C) = 12.1.
<em>∴ final temperature = 25°C + 12.1 = 37.1°C.</em>