Answer is: because weak acids do not dissociate completely.
The strength of an Arrhenius
acid determines percentage of ionization of acid and the number of H⁺ ions formed. <span>
Strong acids completely ionize in water and give large amount ofhydrogen ions (H</span>⁺), so we use only one arrow, because reaction goes in one direction and there no molecules of acid in solution.
For example hydrochloric acid: HCl(aq) → H⁺(aq) + Cl⁻(aq).
<span>
Weak acid partially ionize in water
and give only a few hydrogen ions (H</span>⁺), in the solution there molecules of acid and ions.
For example cyanide acid: HCN(aq) ⇄ H⁺(aq)
+ CN⁻(aq).
Answer:
Decrease
Explanation:
Since the speed in which the gas molecules are faster as they are heated, they fly around in the container and logically, it is harder to insert a moving object into water than something more stationary or slower.
Answer:
Explanation:
The oxidation state, sometimes referred to as oxidation number, describes the degree of oxidation (loss of electrons) of an atom in a chemical compound. Conceptually, the oxidation state, which may be positive, negative or zero, is the hypothetical charge that an atom would have if all bonds to atoms of different elements were 100% ionic, with no covalent component. This is never exactly true for real bonds.
The term oxidation was first used by Antoine Lavoisier to signify reaction of a substance with oxygen. Much later, it was realized that the substance, upon being oxidized, loses electrons, and the meaning was extended to include other reactions in which electrons are lost, regardless of whether oxygen was involved.
Helped?
Brainliest?
Answer:
The further an electron is from the nucleus. the greater its energy level.
Explanation:
When an electron is close to the nucleus, it is at as low an energy level as it can get.
We must put energy into an electron to pull it away from the attraction of a nucleus.
So, electrons that are further from the nucleus are at higher energy levels.