Answer:
2/3
Step-by-step explanation:
Cancel the common factor 2 = 2/3
Solution:
<u>A few definitions...</u>
- Rational number - Any integer, fraction, terminating decimal, or repeating decimal is classified as a rational number
- Irrational number - All the real numbers which are not rational numbers.
<u>Option A - Rational or Irrational?</u>
Since both are known as fractions, they are rational numbers.
<u>Option B - Rational or Irrational?</u>
√2 is classified as an Irrational number because if it is simplified, it does not result in any integer, fraction, terminating decimal, or repeating decimal.
<u>Option C - Rational or Irrational?</u>
- 1/√4 + 7/2
- => 1/2 + 7/2
- => 8/2 = 4
Since this is an integer, this is rational.
<u>Option D - Rational or Irrational?</u>
- √9 + √4
- => √3 x 3 + √2 x 2
- => 3 + 2 = 5
Since this is an integer, this is rational.
In conclusion...
Option B is correct.
<h3><em>In AP form 2nd term - 1st term = 3rd term - 2nd term
</em></h3><h3><em>b²-a² = c²-b²
</em></h3><h3><em>b²+b² = c²+a²
</em></h3><h3><em>2b² = c²+a²
</em></h3><h3><em>
</em></h3><h3><em>Add 2ab+2ac+2bc on both sides
</em></h3><h3><em>
</em></h3><h3><em>2b²+2ab+2ac+2bc = a²+c²+ac+ac+bc+bc+ab+ab
</em></h3><h3><em>2b²+2ab+2ac+2bc = ac+bc+a²+ab+bc+c²+ab+ac
</em></h3><h3><em>2b²+2ab+2ca+2cb = ca+cb+a²+ab+cb+c²+ab+ac
</em></h3><h3><em>2(ba+b²+ca+cb) = (ca+cb+a²+ab) + (cb+c²+ab+ac)
</em></h3><h3><em>2((ba+b²)+(ca+cb)) = ((ca+cb)+(a²+ab)) + ((cb+c²)+(ab+ac))
</em></h3><h3><em>2(b(a+b)+c(a+b)) = (c(a+b)+a(a+b)) + (c(b+c)+a(b+c)) </em></h3><h3><em>2(b+c)(a+b) = (c+a)(a+b) + (c+a)(b+c)
</em></h3><h3><em>
</em></h3><h3><em>Divide whole by (a+b)(b+c)(c+a)</em></h3><h3><em></em></h3><h3><em>2/c+a = 1/b+c + 1/a+b</em></h3><h3><em>1/c+a + 1/c+a = 1/b+c + 1/a+b</em></h3><h3><em>1/c+a - 1/b+c = 1/a+b - 1/c+a</em></h3><h3><em></em></h3><h3><em>2nd term - 1st term = 3rd term - 2nd term
</em></h3><h3><em>Thus 1/b+c, 1/c+a, 1/a+b are in AP.</em></h3><h3><em></em></h3><h3><em>HOPE IT HELPS !!!</em></h3><h3><em>THANK YOU !!!</em></h3>
Answer:
it should be a.
Step-by-step explanation:
The correct answer is polyhedron