Answer:

Explanation:
Assuming that all caculations are at normal pressure and -1.72°C :

Where
is the number of moles of hydrogen
is the mass of hydrogen
is the density of hydrogen
Answer:
c The concentration(s) of reactant(s) is constant over time.
Step-by-step explanation:
When the reaction A ⇌ B reaches equilibrium, the concentrations of reactants and products are constant over time.
a is <em>wrong</em>, because the concentrations of reactants and products are usually quite different.
b is <em>wrong</em>, because both product and reactant molecules are being formed at equilibrium.
d is <em>wrong</em>. The rates of the forward and reverse reactions are equal, but they are not zero.
Answer:
C.)One electron in each p orbital
Explanation:
In a P-sublevel with 3 electrons, they should be arranged with one electron going into each p-orbitals.
This is in accordance with the Hund's rule of maximum multiplicity.
The rule states that "electrons go into degenerate orbitals or sub-levels(p,d and f) singly before paring up".
Since the p-orbital is 3-fold degenerate with a capacity to accommodate a maximum number of 6 electrons, given 3 electrons, they will follow the Hund's rule in order to fill the orbitals.
So one electron will go in each p - orbitals easily.
Answer:
T2 = 51.6°C
Explanation:
Given:
P1 = 1.01 atm
T1 = 25°C + 273 = 298K
P2 = 1.10 atm
T2 = ?
P1/T1 = P2/T2
Solving for T2,
T2 = (P2/P1)T1
= (1.10 atm/1.01 atm)(298K)
= 324.6 K
= 51.6°C
where Tc = Tk - 273