Consider a car<span> that travels between points A and B. The </span>car's<span> average </span>speed<span> can be ..... the </span>car<span> to </span>slow down<span> with a </span>constant acceleration<span> of </span>magnitude 3.50 m/s2<span>. </span>If<span> the </span>car comes<span> to a </span>stop<span> in a </span>distance<span> of</span>30.0 m<span>, what was the </span>car's original speed<span>? ... A </span>car<span> is </span>traveling<span> at 26.0 </span>m<span>/s when the </span>driver suddenly applies<span> the </span>brakes<span>, ...</span>
Answer:
Fetal Hb binds oxygen more tightly than adult Hb (not option a)
<span>When the Moon is directly between the Sun and Earth, a spring tide will occur along a shoreline that is facing the Moon.
</span>
One way to do it is she could right down the data that she got
Answer:
Explanation:
The question is incomplete.
The equation of motion is given for a particle, where s is in meters and t is in seconds. Find the acceleration after 4.5 seconds.
s= sin2(pi)t
Acceleration = d²S/dt²
dS/dt = 2πcos2πt
d²S/dt² = -4π²sin2πt
A(t) = -4π²sin2πt
Next is to find acceleration after 4.5 seconds
A(4.5) = -4π²sin2π(4.5)
A(4.5) = -4π²sin9π
A(4.5) = -4π²sin1620
A(4.5) = -4π²(0)
A(4.5) = 0m/s²