If these were the missing choices:
a)
Consumers fill out questionnaires concerning
their need for new products.
b)
Consumers vote for politicians who decide which
kind of research to support
c)
Consumers decide what to buy and what not to buy
d)
Consumers influence the decisions of private
foundations by deciding where to donate money.
My answer would be: c) <span>Consumers decide what to buy and what not to buy</span>
Every growth is based on the demand of the people. If a good or service is needed then its demand will increase. If a good or service is not needed then its demand will decrease until such time that said good or service will be eliminated.
Answer:
The speed of transverse waves in this string is 519.61 m/s.
Explanation:
Given that,
Mass per unit length = 5.00 g/m
Tension = 1350 N
We need to calculate the speed of transverse waves in this string
Using formula of speed of the transverse waves

Where,
= mass per unit length
T = tension
Put the value into the formula


Hence, The speed of transverse waves in this string is 519.61 m/s.
Answer:
I would say its a deep ocean trench
Explanation:
This is because deep ocean trenches are found at the deepest part of the ocean and also at Pacific ocean margins or Rim where subduction usually occurs and Aleutian islands are part of the Pacific Rim
Answer:
If you spend more time in the sun, your skin will become drier.
a p e x
Answer:
On real life example of a scenario that takes advantage of the inverse relationship between force and time when impulse is constant is when making a serve with a lawn tennis racket
How It is an example of impulse is that when a serve is made by moving the bat slowly, the lawn tennis player uses less force and the ball is in contact with the string for longer a period
When however, the lawn tennis player moves the racket faster, with the strings of the racket highly tensioned he uses more force and the ball also spends less time on the racket to produce the same momentum
Explanation:
The impulse of a force, ΔP is given by the following formula;
ΔP = F × Δt
Where ΔP is constant, we have;
F ∝ 1/Δt
Therefore, for the same impulse, when the force is increased, the time of contact is decreases and vice versa.