Given :
A 120 kg box is on the verge of slipping down an inclined plane with an angle of inclination of 47º.
To Find :
The coefficient of static friction between the box and the plane.
Solution :
Vertical component of force :

Horizontal component of force(Normal reaction) :

Since, box is on the verge of slipping :

Therefore, the coefficient of static friction between the box and the plane is 1.07.
Hence, this is the required solution.
Answer:
a bowling ball because it has the most mass.
Answer:
Work= -7.68×10⁻¹⁴J
Explanation:
Given data
q₁=q₂=1.6×10⁻¹⁹C
r₁=2.00×10⁻¹⁰m
r₂=3.00×10⁻¹⁵m
To find
Work
Solution
The work done on the charge is equal to difference in potential energy
W=ΔU
![Work=U_{1}-U_{2}\\ Work=-kq_{1}q_{2}[\frac{1}{r_{2}}-\frac{1}{r_{1}} ]\\Work=(-9*10^{9})*(1.6*10^{-19} )^{2}[\frac{1}{3.0*10^{-15} }-\frac{1}{2*10^{-10} } ]\\ Work=-7.68*10^{-14}J](https://tex.z-dn.net/?f=Work%3DU_%7B1%7D-U_%7B2%7D%5C%5C%20Work%3D-kq_%7B1%7Dq_%7B2%7D%5B%5Cfrac%7B1%7D%7Br_%7B2%7D%7D-%5Cfrac%7B1%7D%7Br_%7B1%7D%7D%20%5D%5C%5CWork%3D%28-9%2A10%5E%7B9%7D%29%2A%281.6%2A10%5E%7B-19%7D%20%29%5E%7B2%7D%5B%5Cfrac%7B1%7D%7B3.0%2A10%5E%7B-15%7D%20%7D-%5Cfrac%7B1%7D%7B2%2A10%5E%7B-10%7D%20%7D%20%5D%5C%5C%20%20Work%3D-7.68%2A10%5E%7B-14%7DJ)
Answer:
B. 2 meters.
Explanation:
To rotate the capstan a certain amount of torque is required, and if each sailor applies a force
at a distance
from the center, then for two sailors the total torque will be
;
therefore, for one sailor to apply the same torque it must be that the torque
he applies must be equal to the torque that the two sailors applied:

which gives
.
and since
,

which is choice B.
There’s a first
“clump”/drum beat every half second. That clump will travel about 170m in half
a second. Someone 170m away would do their “clump” as the second “clump” was
taking place. I think. <span>
</span>