Answer:
36s
Explanation:
Let the objects be A and B.
Let the initial velocity of A be U and the initial velocity of B be 3U
The height sustain by A will be;
The final velocity would be zero
V2 = U2-2gH
Hence
0^2= U2 -2gH
H = U^2/2g
Similarly for object B, the height sustain is;
V2 = (3U)^2-2gH
Hence
0^2= 3U^2 -2gH
U2-2gH
Hence
0^2= U2 -2gH
H = 3U^2/2g
By comparism. The object with higher velocity sustains more height and so should fall longer than object A.
Now object A would take;
From V=U+gt as the object falls freely, the initial velocity is zero hence and the final velocity of the object is;
V=10×12=120m/s let g be 10m/S2
Similarly for object B,
The final velocity for B when it's falling it should be 3×that of A
Meaning
3V= gt
t =3V/g = 3× 120/10 = 36s
Answer:
Explanation:
For example, an ice cube has heat energy and so does a glass of lemonade. If you put the ice in the lemonade, the lemonade (which is warmer) will transfer some of its heat energy to the ice.
Question: How fast was the arrow moving before it joined the block?
Answer:
The arrow was moving at 15.9 m/s.
Explanation:
The law of conservation of energy says that the kinetic energy of the arrow must be converted into the potential energy of the block and arrow after it they join:

where
is the mass of the arrow,
is the mass of the block,
of the change in height of the block after the collision, and
is the velocity of the arrow before it hit the block.
Solving for the velocity
, we get:

and we put in the numerical values
,



and simplify to get:

The arrow was moving at 15.9 m/s