Using the Equation:
v² = vi² + 2 · a · s → Eq.1
where,
v = final velocity
vi = initial velocity
a = acceleration
s = distance
<span><span>We know that vi = 0 because the ball was at rest initially.
</span><span>
Therefore,
Solving Eq.1 for acceleration,
</span></span> v² = vi² + 2 · a · s
v² = 0 + 2 · a · s
v² = 2 · a · s
Rearranging for a,
a = v ²/2·<span>s
Substituting the values,
a = 46</span>²/2×1<span>
a = 1058 m/s</span>²
<span>Now applying Newton's 2nd law of motion,
</span>
<span>F = ma
= 0.145</span>×<span>1058
F = 153.4 N</span>
Answer:
Newton (N)
Explanation:
A newton is the unit of measurement for force
Answer:
letter B
none zero digit are significant figures
Answer:
The answer to your question is below
Explanation:
Data
light speed = 300 000 km/s
a) Express it in scientific notation
to do it, we just move the decimal point 5 places to the left
300 000 = 3.0 x 10 ⁵ km/s
b) Convert this value to meters per hour
(300 000 km/s)(1000 m/1 km)(3600 s/1 h) = 300000x1000x3600 / 1x1x1
= 1.08 x 10¹² m/h
c) What distance in centimeters does light travel in 1 s?
data
v = 300 000 km/s
d = ?
t = 1 s
formula v = d/t we clear distance d = vxt
d = 300000 x 1 = 300000 km
d = 300000000 m = 30000000000 cm