1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
igomit [66]
3 years ago
8

Koala bears can eat only certain kind of Australian eucalyptus leaves.koalas are considered

Physics
1 answer:
DaniilM [7]3 years ago
3 0
<em>Hello there, and thank you for asking your question here on brainly.

<u>Answer: Koala bears are considered herbivores, or as in the scientific name, arboreal herbivorous marsupial, marsupial because it also carries it's babies around in a pouch. Koala bears are also native to Australia, which eucalyptus leaves are also native to.
</u>
Hope this helped you! ♥</em>
You might be interested in
A pendulum is formed by taking a 2.0 kg mass and hanging it from the ceiling using a steel wire with a diameter of 1.1 mm. it is
Lera25 [3.4K]

Answer: 1.39 s

Explanation:

We can solve this problem with the following equations:

\frac{\Delta l}{l_{o}}=\frac{F}{AY} (1)

T=2 \pi \sqrt{\frac{l_{o}}{g}} (2)

Where:

\Delta l=0.05 mm=5(10)^{-5} m is the length the steel wire streches (taking into account 1mm=0.001 m)

l_{o} is the length of the steel wire before being streched

F=mg=(2 kg)(9.8 m/s^{2})=19.6 N is the force due gravity (the weight) acting on the pendulum with mass m=2 kg

A is the transversal area of the wire

Y=2(10)^{11} Pa is the Young modulus for steel

T is the period of the pendulum

g=9.8 m/s^{2} is the acceleration due gravity

Knowing this, let's begin by finding A:

A=\pi r^{2}=\pi (\frac{d}{2})^{2}=\pi \frac{d^{2}}{4} (3)

Where d=1.1 mm=0.0011 m is the diameter of the wire

A=\pi \frac{(0.0011 m)^{2}}{4} (4)

A=9.5(10)^{-7}m^{2} (5)

Knowing this area we can isolate l_{o} from (1):

l_{o}=\frac{\Delta l AY}{F} (6)

And substitute l_{o} in (2):

T=2 \pi \sqrt{\frac{\frac{\Delta l AY}{F}}{g}} (7)

T=2 \pi \sqrt{\frac{\frac{(5(10)^{-5} m)(9.5(10)^{-7}m^{2})(2(10)^{11} Pa)}{2(10)^{11} Pa}}{9.8 m/s^{2}}} (8)

Finally:

T=1.39 s

3 0
3 years ago
Elements with high atomic numbers tend to have____.
loris [4]

More protons than electron

6 0
3 years ago
The study of blank involves the study of the natural world
RUDIKE [14]
The study of science involves the study of the natural world.
3 0
2 years ago
If you increase the frequency of a sound wave four times what will happen to its speed
Anika [276]

Answer: The correct answer is "the speed of the wave becomes four times".

Explanation:

The relation between the speed, frequency and the wavelength is as follows:

v=f\lambda

Here, v is the speed of the wave, f is the frequency and \lambda is the wavelength.

The speed of the sound wave is directly proportional to the frequency.

In the given problem, if the speed of the sound wave is increased four times then the speed of the sound becomes four times.

Therefore, the speed of the sound wave becomes four times.

8 0
3 years ago
Read 2 more answers
A small metal ball is suspended from the ceiling by a thread of negligible mass. The ball is then set in motion in a horizontal
Gemiola [76]

Answer:

Time taken, T=2\pi \sqrt{\dfrac{l\ cos\theta}{g}}

Explanation:

It is given that, a small metal ball is suspended from the ceiling by a thread of negligible mass. The ball is then set in motion in a horizontal circle so that the thread’s trajectory describes a cone as shown in attached figure.

From the figure,

The sum of forces in y direction is :

T\ cos\theta-mg=0

T=\dfrac{mg}{cos\theta}

Sum of forces in x direction,

T\ sin\theta=\dfrac{mv^2}{r}

mg\ tan\theta=\dfrac{mv^2}{r}.............(1)

Also, r=l\ sin\theta

Equation (1) becomes :

mg\ tan\theta=\dfrac{mv^2}{l\ sin\theta}

v=\sqrt{gl\ tan\theta.sin\theta}...............(2)

Let t is the time taken for the ball to rotate once around the axis. It is given by :

T=\dfrac{2\pi r}{v}

Put the value of T from equation (2) to the above expression:

T=\dfrac{2\pi r}{\sqrt{gl\ tan\theta.sin\theta}}

T=\dfrac{2\pi l\ sin\theta}{\sqrt{gl\ tan\theta.sin\theta}}

On solving above equation :

T=2\pi \sqrt{\dfrac{l\ cos\theta}{g}}

Hence, this is the required solution.

4 0
2 years ago
Other questions:
  • Design a rectangular milk carton box of width ww, length ll, and height hh which holds 474 cm3474 cm3 of milk. The sides of the
    13·1 answer
  • Fires typically burn in a downward fashion
    12·1 answer
  • You volunteer for chalkboard cleaning duty and you get to work with the erasers. As you rub the dust off of the chalkboard, whit
    10·1 answer
  • at 1 p.m. a car traveling at a constant velocity of 78 km per hour towards the West it's 34 km to the west of our school how far
    9·1 answer
  • An electron moves along the z-axis with vz=4.5×10^7m/s. As it passes the origin, what are the strength and direction of the magn
    12·1 answer
  • What Species can change over time to adapt to their environment
    9·1 answer
  • An object of mass 100kg is moving with a velocity of 5m/s. Calculate the kinetic energy of that object
    13·2 answers
  • Which two of the following statements best describe the similarity between elements and compounds? 1. Elements and compounds are
    14·1 answer
  • 3. Magnetite is <br>a) Natural magnet <br>(b)Artificial magnet <br>(c) Not a magnet ​
    6·2 answers
  • If a container of gas is at rest, the average velocity of molecules must be zero. yet theaverage speed is not zero. explain.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!