Hardy-Weinberg Equation (HW) states that following certain biological tenets or requirements, the total frequency of all homozygous dominant alleles (p) and the total frequency of all homozygous recessive alleles (q) for a gene, account for the total # of alleles for that gene in that HW population, which is 100% or 1.00 as a decimel. So in short: p + q = 1, and additionally (p+q)^2 = 1^2, or 1
So (p+q)(p+q) algebraically works out to p^2 + 2pq + q^2 = 1, where p^2 = genotype frequency of homozygous dominant individuals, 2pq = genotype frequency of heterozygous individuals, and q^2 = genotype frequency of homozygous recessive individuals.
The problem states that Ptotal = 150 individuals, H frequency (p) = 0.2, and h frequency (q) = 0.8.
So homozygous dominant individuals (HH) = p^2 = (0.2)^2 = 0.04 or 4% of 150 --> 6 people
Heterozygous individuals (Hh) = 2pq = 2(0.2)(0.8) = 0.32 or 32% of 150
--> 48 people
And homozygous recessive individuals (hh) = q^2 = (0.8)^2 = 0.64 = 64% of 150 --> 96 people
Hope that helps you to understand how to solve these types of population genetics problems!
Nonpoint source pollution is a greater hazard, because scientists are not able to identify a single location the pollution came from. It is harder to find a solution if they are unable to find the source.
Hope this helps!
have a great day.
The answer is the nasal cavity. It is a large air filled space above and behind the nose in the middle of the face, it is lined with hairs and mucus membrane. The function of the nasal cavity is to warm, moisturize, and filter air entering the body before it reaches the lungs.
Answer:
5 · every skin cell in a human body
It has enhanced our knowledge in the science world greatly. Many cell organelles and chemical processes can be studied in more detail using the electron microscope.