Answer: E(X) = 30; Var[X] = 180
Step-by-step explanation: This is a <u>Bernoulli</u> <u>Experiment</u>, i.e., the experiment is repeated a fixed number of times, the trials are independents, the only two outcomes are "success" or "failure" and the probability of success remains the same, So, to calculate <em><u>Expected</u></em> <em><u>Value</u></em>, which is the mean, in these conditions:
 
r is number of times it is repeated
p is probability it happens
Solving:
 
E(X) = 30
<u>Variance</u> is given by:
![Var[X]=\frac{r(1-p)}{p^{2}}](https://tex.z-dn.net/?f=Var%5BX%5D%3D%5Cfrac%7Br%281-p%29%7D%7Bp%5E%7B2%7D%7D)
![Var[X]=\frac{5(1-1/6)}{(1/6)^{2}}](https://tex.z-dn.net/?f=Var%5BX%5D%3D%5Cfrac%7B5%281-1%2F6%29%7D%7B%281%2F6%29%5E%7B2%7D%7D)
![Var[X]=5.\frac{5}{6}.6^{2}](https://tex.z-dn.net/?f=Var%5BX%5D%3D5.%5Cfrac%7B5%7D%7B6%7D.6%5E%7B2%7D)
Var[X] = 180
Expected Value and Variance of the number of times one must throw a die until 1 happens 5 times are 30 and 180, respectively.
 
        
             
        
        
        
Hrmmmm let's see here... 
the fourth statement
        
             
        
        
        
Forty nine hours and ten minutes I’m pretty sure
        
             
        
        
        
What you need to do is add the two equations and combine like terms to get h(x). Refer to the photo for a better explanation.
 
        
        
        
Answer:
no, because intergers are negative. they will never be able to be greater
Step-by-step explanation: