The calculated magnitude is 6.73 x 10³ V/m.
AMU is described as being one-twelfth the mass of a carbon-12 atom (12C). C makes up more than 98% of the carbon that can be found in nature, making it the most prevalent isotope. The magnitude of the field is the change in potential across a small distance in the indicated direction divided by that distance.
Potential difference = 8.20 kV= 8.20 x 10³ V
radius= 19.4/100=0.194 m
total distance that is circumference of the circle= 2πr =2 x 3.14 x 0.194
= 1.218 m
therefore Magnitude= 8.20 x 10³ / 1.218
=6.73 x 10³ V/m
Learn more about Magnitude here-
brainly.com/question/15681399
#SPJ9
Thick lens will have shorter and consequently thin lens will have greater focal length. Because, For a thick lens, the optical path length of the light is more, than for a thin lens, thus, the bending of light will be more in case of a thicker lens. Consequently, it has a shorter focal length.
Answer:
η = 40 %
Explanation:
Given that
Qa ,Heat addition= 1000 J
Qr,Heat rejection= 600 J
Work done ,W= 400 J
We know that ,efficiency of a engine given as

Now by putting the values in the above equation ,then we get

η = 0.4
The efficiency in percentage is given as
η = 0.4 x 100 %
η = 40 %
Therefore the answer will be 40%.
<span>the statement that is true regarding flexibility is : b. a joint's range of motion will be lost if the joint is not used regularly.
Our body is like a machine. If we not constantly heat it up, our body will be more prone to injury. We can see that the old people who lived within the tribe in the middle of the mountain are far stronger than the one who lived in the city.</span>
Answer:
v = 120 m/s
Explanation:
We are given;
earth's radius; r = 6.37 × 10^(6) m
Angular speed; ω = 2π/(24 × 3600) = 7.27 × 10^(-5) rad/s
Now, we want to find the speed of a point on the earth's surface located at 3/4 of the length of the arc between the equator and the pole, measured from equator.
The angle will be;
θ = ¾ × 90
θ = 67.5
¾ is multiplied by 90° because the angular distance from the pole is 90 degrees.
The speed of a point on the earth's surface located at 3/4 of the length of the arc between the equator and the pole, measured from equator will be:
v = r(cos θ) × ω
v = 6.37 × 10^(6) × cos 67.5 × 7.27 × 10^(-5)
v = 117.22 m/s
Approximation to 2 sig. figures gives;
v = 120 m/s