Answer:
Mass of car = 1098 kg
Explanation:
Here law of conservation of momentum is applied.
Let mass of car be m.
Initial momentum = Final momentum.
Initial momentum = 4350 x 7.39 + m x 0 = 32416.5 kgm/s
Final momentum = 4350 x 4.55 + m x 11.5 = 19792.5+11.5m
We have
19792.5+11.5m = 32416.5
m = 1097.97 kg
Mass of car = 1098 kg
Answer:
λ = 6.602 x 10^(-7) m
Explanation:
In a double-slit interference experiment, the distance y of the maximum of order m from the center of the observed interference pattern on the screen is given as ;
y = mλD/d
Where;
D is the distance of the screen from the slits = 6.2 m
d is the distance between the two slits = 0.046 mm = 0.046 x 10^(-3) m
The fringes on the screen are 8.9 cm = 0.089 m apart from each other, this means that the first maximum (m=1) is located at y = 0.089 m from the center of the pattern.
Therefore, from the previous formula we can find the wavelength of the light:
y = mλD/d
So, λ = dy/mD
Thus,
λ = (0.046 x 10^(-3) x 0.089)/(1 x 6.2)
λ = 6.602 x 10^(-7) m
Answer:
(a) 0.017m/s^2
(b) 17/100,000
(c) 0.17m, 0.558ft
Explanation:
(a) speed = 60mph = 60m/1h × 1h/3600s = 0.017m/s, time = 10s
Acceleration (a) = speed ÷ time = 0.017m/s ÷ 10s = 0.0017m/s^2
(b) g = 9.8m/s^2, a = 0.0017m/s^2
a/g = 0.0017/9.8 = 0.00017 = 17/100,000
(c) Distance = speed × time = 0.017m/s × 10s = 0.17m
Distance in foot = 0.17 × 3.2808ft = 0.558ft