1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gayaneshka [121]
3 years ago
9

An important diagnostic tool for heart disease is the pressure difference between blood pressure in the heart and in the aorta l

eading away from the heart. Since blood within the heart is essentially stationary, this pressure difference can be inferred from a measurement of the speed of blood flow in the aorta. Take the speed of sound in stationary blood to be c.
a. Sound sent by a transmitter placed directly inline with the aorta will be reflected back to a receiver and show a frequency shift with each heartbeat. If the maximum speed of blood in the aorta is v, what frequency will the receiver detect? Note that you cannot simply use the textbook Doppler Shift formula because the detector is the same device as the source, receiving sound after reflection.
b. Show that in the limit of low blood velocity (v <
f= 2fo v/c
Physics
1 answer:
butalik [34]3 years ago
4 0

Answer:

a)   f ’’ = f₀ \frac{1 + \frac{v}{c} }{1- \frac{v}{c} } , b)   Δf = 2 f₀ \frac{v}{c}

Explanation:

a) This is a Doppler effect exercise, which we must solve in two parts in the first the emitter is fixed and in the second when the sound is reflected the emitter is mobile.

Let's look for the frequency (f ’) that the mobile aorta receives, the blood is leaving the aorta or is moving towards the source

                    f ’= fo\frac{c+v}{c}

This sound wave is reflected by the blood that becomes the emitter, mobile and the receiver is fixed.

                   f ’’ = f’ \frac{c}{ c-v}

where c represents the sound velocity in stationary blood

therefore the received frequency is

                 f ’’ = f₀   \frac{c}{c-v}

let's simplify the expression

                f ’’ = f₀ \frac{c+v}{c-v}

                f ’’ = f₀ \frac{1 + \frac{v}{c} }{1- \frac{v}{c} }

         

b) At the low speed limit v <c, we can expand the quantity

                 (1 -x)ⁿ = 1 - x + n (n-1) x² + ...

                 ( 1- \frac{v}{c} ) ^{-1} = 1 + \frac{v}{c}

 

                f ’’ = fo ( 1+ \frac{v}{c}) ( 1 + \frac{v}{c} )

                f ’’ = fo ( 1 + 2 \frac{v}{c} + \frac{v^2}{ c^2} )

leave the linear term

               f ’’ = f₀ + f₀ 2\frac{v}{c}

the sound difference

               f ’’ -f₀ = 2f₀ v/c

               Δf = 2 f₀ \frac{v}{c}

You might be interested in
2
ella [17]
C : I did this already
6 0
3 years ago
Read 2 more answers
What was the greatest contribution of the monasteries? A. Illuminated manuscripts. B. Cloisters. C. Sculpture.d. Transepts
REY [17]
I am not entirely sure but i believe the answer is C scupture

3 0
4 years ago
Read 2 more answers
The element selenium (Se) bonds with chlorine (Cl) to make the formula SeCl2 Chlorine is more electronegative than selenium. Wha
Akimi4 [234]

Answer:

Selenium dichloride

Explanation:

Selenium (Se) and Chlorine (Cl) are both elements capable of combining together to form a compound with the chemical formula; SeCl2. Since the chlorine atom is more electronegative than selenium atom, the chlorine pulls more electrons towards itself to form an IONIC bond.

The SeCl2 compound formed is called Selenium dichloride as two atoms of Chlorine are needed to combine with one atom of Selenium to form the compound.

7 0
3 years ago
A mass oscillates up and down on a vertical spring with an amplitude of 3 cm and a period of 2 s. What total distance does the m
harina [27]

Explanation:

It is given that,

A mass oscillates up and down on a vertical spring with an amplitude of 3 cm and a period of 2 s. It is a case of simple harmonic motion. If the amplitude of a wave is T seconds, then the distance cover by that object is 4 times the amplitude.

In 2 seconds, distance covered by the mass is 12 cm.

In 1 seconds, distance covered by the mass is 6 cm

So, in 16 seconds, distance covered by the mass is 96 cm

So, the distance covered by the mass in 16 seconds is 96 cm. Hence, this is the required solution.

6 0
3 years ago
A new restaurant is interested in determining the best time-temperature combination for roasting a five-pound cut of lamb. The t
Leto [7]

Answer:

C

Explanation:

(c) The two cuts that are being roasted for each time-temperature combination are an example of replication.

In the question it is given that  From 10 identical cuts of lamb, 2 are randomly selected to roast using each of the time-temperature combinations in the same oven. Here it is an act of copying the exact sahpe size of the lamb in all cuts, which is nothing but replication. Moreover, this replication can help in proper comparision.

7 0
3 years ago
Other questions:
  • . Conservation along the horizontal using a bicycle wheel: Stand on the platform holding a bicycle wheel with its axis horizonta
    11·1 answer
  • A black, absorbing piece of card board of area A = 2.0 cm2 absorbs light with intensity 18 W/m2. What is the force exerted on th
    15·1 answer
  • NEED HELP!!<br><br> To complete its outermost shell, oxygen will most likely ____
    7·2 answers
  • Which of the following is an example of heat being transferred by radiation? Choose all that apply, Fire, Sun, Candle Flame, Sto
    7·2 answers
  • g A simply supported beam is subjected to a distribution of force per length given by the polynomial form: q(x)=Axn . Calculate
    10·1 answer
  • The note "Middle C" is known to have a frequency of 261.6 Hz. What would
    10·1 answer
  • Which best explains parallel forces
    10·1 answer
  • A satellite is orbiting the Earth in a circular orbit of radius r. Its frequency is independent of its height above the surface
    13·1 answer
  • I need an answer quick
    13·1 answer
  • A centrifuge in a medical laboratory rotates at an angular speed of 3,400 rev/min. When switched off, it rotates through 52.0 re
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!