1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gayaneshka [121]
2 years ago
9

An important diagnostic tool for heart disease is the pressure difference between blood pressure in the heart and in the aorta l

eading away from the heart. Since blood within the heart is essentially stationary, this pressure difference can be inferred from a measurement of the speed of blood flow in the aorta. Take the speed of sound in stationary blood to be c.
a. Sound sent by a transmitter placed directly inline with the aorta will be reflected back to a receiver and show a frequency shift with each heartbeat. If the maximum speed of blood in the aorta is v, what frequency will the receiver detect? Note that you cannot simply use the textbook Doppler Shift formula because the detector is the same device as the source, receiving sound after reflection.
b. Show that in the limit of low blood velocity (v <
f= 2fo v/c
Physics
1 answer:
butalik [34]2 years ago
4 0

Answer:

a)   f ’’ = f₀ \frac{1 + \frac{v}{c} }{1- \frac{v}{c} } , b)   Δf = 2 f₀ \frac{v}{c}

Explanation:

a) This is a Doppler effect exercise, which we must solve in two parts in the first the emitter is fixed and in the second when the sound is reflected the emitter is mobile.

Let's look for the frequency (f ’) that the mobile aorta receives, the blood is leaving the aorta or is moving towards the source

                    f ’= fo\frac{c+v}{c}

This sound wave is reflected by the blood that becomes the emitter, mobile and the receiver is fixed.

                   f ’’ = f’ \frac{c}{ c-v}

where c represents the sound velocity in stationary blood

therefore the received frequency is

                 f ’’ = f₀   \frac{c}{c-v}

let's simplify the expression

                f ’’ = f₀ \frac{c+v}{c-v}

                f ’’ = f₀ \frac{1 + \frac{v}{c} }{1- \frac{v}{c} }

         

b) At the low speed limit v <c, we can expand the quantity

                 (1 -x)ⁿ = 1 - x + n (n-1) x² + ...

                 ( 1- \frac{v}{c} ) ^{-1} = 1 + \frac{v}{c}

 

                f ’’ = fo ( 1+ \frac{v}{c}) ( 1 + \frac{v}{c} )

                f ’’ = fo ( 1 + 2 \frac{v}{c} + \frac{v^2}{ c^2} )

leave the linear term

               f ’’ = f₀ + f₀ 2\frac{v}{c}

the sound difference

               f ’’ -f₀ = 2f₀ v/c

               Δf = 2 f₀ \frac{v}{c}

You might be interested in
Multiply.<br> (2x + 4)(x - 4)
sergij07 [2.7K]

Answer:

(2x + 4)(x - 4)=2x^2-4x-16

7 0
2 years ago
How many seconds will it take for a the International Space Station to travel 450 km at a rate of 100 m/s?
SVEN [57.7K]

Time = (distance) / (speed)

<em></em>

Time = (450 km) / (100 m/s)

Time = (450,000 m) / (100 m/s)

Time = <em>4500 seconds </em>(that's 75 minutes)

Note:

This is about HALF the speed of the passenger jet you fly in when you go to visit Grandma for Christmas.

If the International Space Station flew at this speed, it would immediately go ker-PLUNK into the ocean.

The speed of the International Space Station in its orbit is more like 3,100 m/s, not 100 m/s.

8 0
3 years ago
An Olympic discus thrower (~100 kg) launches the 2.0 kg discus by spinning rapidly (~4 times per second) with arm outstretched (
vladimir1956 [14]

Answer:

F = 1263.03 N

Explanation:s

given,                      

mass of the disk thrower = 100 Kg

mass of the disk = 2 Kg                

angular speed of the disk  = 4 rev/s

arm outstretched = 1 m                  

centripetal force of the disk in the circular path

F = m ω² r                        

ω = 4 x 2 x π        

ω = 25.13 rad/s

F = m ω² r                      

F = 2 x 25.13² x 1

F = 1263.03 N                                              

hence, centripetal force equal to the F = 1263.03 N

6 0
2 years ago
The radius of curvature of both sides of a converging lens is 18 cm. One side of the lens is coated withsilver so that the inner
Dahasolnce [82]

Answer:

n = 1.4

Explanation:

Given,

R1 = 18 cm, R2 = -18 cm

From lens makers formula

1/f = (n - 1)(1/18 + 1/18) = (n-1)/9

f = 9/(n-1)

Power, P = 1/f ( in m) = (n-1)/0.09

Now, this lens is in with conjunction with a concave mirror which then can be thought of as to be in conjunction with another thin lens

Power of concave mirror = P' = 1/f ( in m) = 2/R = 2/0.18 = 1/0.09

Net power of the combination = 2P + P' = 2(n-1)/0.09 + 1/0.09 = 1/0.05

n = 1.4

7 0
2 years ago
what is the electric potential at point A in the electric field created by a point charge of 5.5 • 10^-12 C? estimate k as 9.00
Hitman42 [59]

The electric potential at point A in the electric field= 0.099 x 10 ⁻¹v

<u>Explanation</u>:

Given data,

charge = 5.5 x 10¹² C

k =9.00 x 10⁹

The electric potential V of a point charge can found by,

V= kQ / r

Assuming, r=5.00×10⁻² m

V= 5.5 x 10⁻¹²C x  9.00 x 10⁹ / 5.00×10⁻² m

V=  49.5 x 10⁻³/ 5.00×10⁻²

Electric potential V=  0.099 x 10⁻¹v

3 0
2 years ago
Other questions:
  • What Is the volume of the rectangular prism of 6cm 9cm and 5cm
    7·1 answer
  • Characteristics of abuse of Narcotics include ______.
    9·1 answer
  • At the same instant that a 0.50-kg ball is dropped from 25m above Earth,? At the same instant that a 0.50-kg ball is dropped fro
    15·1 answer
  • Consider two spaceships, each traveling at 0.50c in a straight line. Ship A is moving directly away from the Sun and ship B is a
    13·1 answer
  • Water runs into a fountain, filling all the pipes, at a steady rate of 0.750 m3&gt;s. (a) How fast will it shoot out of a hole 4
    10·1 answer
  • Fluids can flow and change shape to fit their containers. Which two states are<br> fluids?
    10·1 answer
  • Which of the following types of light has the most energy to give to an electron?
    10·2 answers
  • Use the information and model to answer the following question.
    8·2 answers
  • PLEASE HELPPP! :))))
    12·1 answer
  • What acceleration did you measure from the video? Does this match the acceleration you calculated in the first step?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!