<h3>
Answer:</h3>
0.111 J/g°C
<h3>
Explanation:</h3>
We are given;
- Mass of the unknown metal sample as 58.932 g
- Initial temperature of the metal sample as 101°C
- Final temperature of metal is 23.68 °C
- Volume of pure water = 45.2 mL
But, density of pure water = 1 g/mL
- Therefore; mass of pure water is 45.2 g
- Initial temperature of water = 21°C
- Final temperature of water is 23.68 °C
- Specific heat capacity of water = 4.184 J/g°C
We are required to determine the specific heat of the metal;
<h3>Step 1: Calculate the amount of heat gained by pure water</h3>
Q = m × c × ΔT
For water, ΔT = 23.68 °C - 21° C
= 2.68 °C
Thus;
Q = 45.2 g × 4.184 J/g°C × 2.68°C
= 506.833 Joules
<h3>Step 2: Heat released by the unknown metal sample</h3>
We know that, Q = m × c × ΔT
For the unknown metal, ΔT = 101° C - 23.68 °C
= 77.32°C
Assuming the specific heat capacity of the unknown metal is c
Then;
Q = 58.932 g × c × 77.32°C
= 4556.62c Joules
<h3>Step 3: Calculate the specific heat capacity of the unknown metal sample</h3>
- We know that, the heat released by the unknown metal sample is equal to the heat gained by the water.
4556.62c Joules = 506.833 Joules
c = 506.833 ÷4556.62
= 0.111 J/g°C
Thus, the specific heat capacity of the unknown metal is 0.111 J/g°C
Combustion Have a great day!
Don't touch your eyes.
Never taste-test unless the teacher tells you to.
Do not touch anything without directions.
Wear safety goggles.
Wash your hands after each experiment.
Wear proper lab clothes.
Do not mishandle lab equipment.
Clean up your workplace.
Act serious; no horseplay!
Report accidents to the teacher right away!
Have a great day, scholar!
Taking into account the definition of molarity, the concentration of the solution is 0.855 .
<h3>Definition of molarity</h3>
Molar concentration or molarity is a measure of the concentration of a solute in a solution and indicates the number of moles of solute that are dissolved in a given volume.
The molarity of a solution is calculated by dividing the moles of solute by the volume of the solution:
Molarity is expressed in units .
<h3>Molarity of NaCl</h3>
In this case, you have:
- number of moles of NaCl= 1.71 moles (being 58.45 g/mole the molar mass of NaCl)
- volume 2 L
Replacing in the definition of molarity:
Solving:
Molarity= 0.855
Finally, the concentration of the solution is 0.855 .
Learn more about molarity:
<u>brainly.com/question/9324116</u>
<u>brainly.com/question/10608366</u>
<u>brainly.com/question/7429224</u>