1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
serg [7]
3 years ago
9

How much paper will it take to make each tree including the bottom??

Mathematics
1 answer:
Nataly [62]3 years ago
7 0

The bottom is a square with a side length of 2 ft.

The area of a square is Area = S^2 = 2^2 = 4 square ft. Bottom)

The area of one side ( triangle) = 1/2 x base x height = 1/2 x 2 x 4 = 4 square ft.

There are 4 triangles: 4 x 4 sq. ft. = 16 sq.ft. ( four sides)

Total area = four sides + bottom =  16 + 4 = 20 feet^2

You might be interested in
Given that f(x) = 19x2 + 152, solve the equation f(x) = 0
telo118 [61]

<em><u>Option A</u></em>

<em><u>The solution is:</u></em>

x = \pm 2i \sqrt{2}

<em><u>Solution:</u></em>

f(x) = 19x^2+152

We have to solve the equation f(x) = 0

Let f(x) = 0

0=19x^2+152

Solve the above equation

19x^2 + 152 = 0

\mathrm{Subtract\:}152\mathrm{\:from\:both\:sides}\\\\19x^2+152-152=0-152\\\\Simplify\ the\ above\ equation\\\\19x^2 = -152\\\\\mathrm{Divide\:both\:sides\:by\:}19\\\\\frac{19x^2}{19} = \frac{-152}{19}\\\\x^2 = -8

Take square root on both sides

x =  \pm \sqrt{-8}\\\\x = \pm \sqrt{-1}\sqrt{8}\\\\\mathrm{Apply\:imaginary\:number\:rule}:\quad \sqrt{-1}=i\\\\x = \pm i\sqrt{8}\\\\x = \pm i \sqrt{2 \times 2 \times 2}\\\\x = \pm 2i\sqrt{2}

Thus the solution is found

5 0
3 years ago
Look at the graph.
Tcecarenko [31]

Answer:

B

Step-by-step explanation:

3 0
2 years ago
Read 2 more answers
Q4.A/Find the linearization L(x, y) of the function f(x, y) = (x + y + 2)² at p. = (1,2)
Dafna11 [192]

Answer:

Find the linearization L(x,y) of the function at each point. f(x,y) = x2 + y2 + 1 a. (4,0) b. (2,0) a. L(x,y) = Find the linearization L(x,y,z) of the function f(x,y,z) = 1x2 + y2 +z2 at the points (7,0,0), (3,4,0), and (4,4,7). The linearization of f(x,y,z) at (7,0,0) is L(x,y,z)= (Type an exact answer, using radicals as needed.)

3 0
3 years ago
Choose three different colors to highlight the Statement in the proof and match it to it's angle or line segment in the diagram.
aliya0001 [1]

Answer:

See the attached

Step-by-step explanation:

The highlights are attached

5 0
3 years ago
Help with my algebra homework.
just olya [345]
Q1. The answer is \frac{(x-4)(x-4)}{(x+3)(x+1)}= \frac{ x^{2}-4x-4x+16}{ x^{2} +x+3x+3} = \frac{ x^{2} -8x+16}{ x^{2} +4x+3}
\frac{ x^{2} -16}{ x^{2} +5x+6} / \frac{ x^{2} +5x+4}{ x^{2} -2x-8} = \frac{ x^{2} -16}{ x^{2} +5x+6}* \frac{x^{2} -2x-8}{ x^{2} +5x+4}
Now, factorise the numerators and denominators:
x² - 16 = x² - 4² = (x + 4)(x - 4)
x² + 5x + 6 = x² + 2x + 3x + 2*3 = x(x+2) + 3(x+2) = (x + 2)(x + 3)
x² - 2x - 8 = x² + 2x - 4x - 2*4 = x(x+2) - 4(x+2) = (x + 2)(x - 4)
x² + 5x + 4 = x² + x + 4x + 4*1 = x(x+1) + 4(x+1) = (x + 1)(x + 4)

\frac{ x^{2} -16}{ x^{2} +5x+6}* \frac{x^{2} -2x-8}{ x^{2} +5x+4}= \frac{(x+4)(x-4)}{(x+2)(x+3)} * \frac{(x+2)(x-4)}{(x+1)(x+4)}
Now, cancel out some factors:
\frac{(x+4)(x-4)}{(x+2)(x+3)} * \frac{(x+2)(x-4)}{(x+1)(x+4)}= \frac{(x-4)(x-4)}{(x+3)(x+1)}=  \frac{ x^{2}-4x-4x+16}{ x^{2} +x+3x+3} = \frac{ x^{2} -8x+16}{ x^{2} +4x+3}


Q2. The answer is \frac{7(a-7)}{(a-8)(a+8)}
Since a² - b² = (a-b)(a+b), then a²- 64 = a² - 8² = (a-8)(a+8).
\frac{7}{a+8} +  \frac{7}{ a^{2} -64} = \frac{7}{a+8} +  \frac{7}{ (a+8)(a-8)}= \frac{7(a-8)}{(a+8)(a-8)} +  \frac{7}{ (a+8)(a-8)}= \frac{7(a-8)+7}{ (a+8)(a-8)}
= \frac{7(a-8)+7*1}{(a+8)(a-8)} =\frac{7(a-8+1)}{(a+8)(a-8)} =\frac{7(a-7)}{(a+8)(a-8)}


Q3. The answer is \frac{7(3a-4)}{(a-6)(a+8)}
\frac{ a^{2} -2a-3}{ a^{2}-9a+18 }-  \frac{a^{2} -5a-6}{ a^{2}+9a+8 }  = \frac{a^{2}+a-3a-3*1}{a^{2}-3a-6a+3*6} - \frac{a^{2}-a-6a-6*1}{a^{2}+a+8a+8*1}
= \frac{a(a+1)-3(a+1)}{a(a-3)-6(a-3)}- \frac{a(a+1)-6(a+1)}{a(a+1)+8(a+1)}= \frac{(a+1)(a-3)}{(a-6)(a-3)} - \frac{(a+1)(a-6)}{(a+1)(a+8)}
Now, cancel out some factors:
\frac{(a+1)(a-3)}{(a-6)(a-3)} - \frac{(a+1)(a-6)}{(a+1)(a+8)}= \frac{a+1}{a-6} - \frac{a-6}{a+8}
\frac{a+1}{a-6} - \frac{a-6}{a+8}= \frac{(a+1)(a+8)}{(a-6)(a+8)} -\frac{(a-6)(a-6)}{(a-6)(a+8)} =\frac{(a+1)(a+8)-(a-6)(a-6)}{(a-6)(a+8)}
= \frac{ a^{2} +9a+8- a^{2} +12-36}{(a-6)(a+8)} =\frac{9a+8+12-36}{(a-6)(a+8)} =\frac{21a-28}{(a-6)(a+8)} =\frac{7(3a-4)}{(a-6)(a+8)}


Q4. The answer is \frac{4x}{(x+3)(1+3x)}=\frac{4x}{ x^{2} +10x+3}
\frac{4}{x+3} / (\frac{1}{x}+3 )=\frac{4}{x+3} / (\frac{1}{x}+ \frac{3x}{x})=\frac{4}{x+3} / (\frac{1+3x}{x})= \frac{4}{x+3} * \frac{x}{1+3x} = \frac{4x}{(x+3)(1+3x)}
\frac{4x}{(x+3)(1+3x)}= \frac{4x}{x+3 x^{2} +3+9x}= \frac{4x}{ x^{2} +10x+3}


Q5. The answer is x = 6
\frac{-2}{x} +4= \frac{4}{x} +3
4-3= \frac{4}{x}- \frac{-2}{x}
1 = \frac{4-(-2)}{x}
1= \frac{4+2}{x}
1= \frac{6}{x}
x = 6
Let's check the solution:
Since: \frac{-2}{x} +4= \frac{4}{x} +3
Then: \frac{-2}{6}+4 = \frac{4}{6} +3
           - \frac{1}{3}+ \frac{4*3}{3}= \frac{2}{3} + \frac{3*3}{3}
           - \frac{1}{3} + \frac{12}{3} =  \frac{2}{3} + \frac{9}{3}
           \frac{-1+12}{3} = \frac{2+9}{3}
           \frac{11}{3} = \frac{11}{3}
Thus, the solution is correct
6 0
3 years ago
Other questions:
  • If 8 units represent 168 liters, what is the value of 10 units?
    8·1 answer
  • If George Washington had 12 wooden teeth and 4 natural teeth. What is the ratio of natural teeth to wooden teeth?
    14·2 answers
  • Help i need to submits this quickly
    12·2 answers
  • A basketball player gets 2 free-throw shots when she is fouled by a player on the opposing team. She misses the first shot 40% o
    5·1 answer
  • A grid shows the positions of a subway stop and your house. The subway stop is located at (7, -6) and your house is located at (
    12·1 answer
  • Evaluate. 12!/12!<br><br><br><br> A.) 0<br> B.) 1<br> C.) 12
    5·2 answers
  • State the radius of the circle of the equation
    10·1 answer
  • 4. What is the slope of the line through the points (2, 5) and (6, 13)?
    14·1 answer
  • Estimate the values of x when y=1
    6·1 answer
  • Find the value of x in the figure below if MP is parallel to RA.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!